
MobileIron AppConnect 4.8.0 for iOS
SDK App Developers Guide

March 30, 2021

Revised August 11, 2021

For complete product documentation see:
MobileIron AppConnect for iOS Product Documentation Home Page

Proprietary and Confidential | Do Not Distribute

https://help.mobileiron.com/s/mil-productdoclistpage?Id=a1s3400000240h0AAA&Name=AppConnect+for+iOS

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 2

Copyright © 2012 - 2021 MobileIron, Inc. All Rights Reserved.

Any reproduction or redistribution of part or all of these materials is strictly prohibited. Information in this
publication is subject to change without notice. MobileIron, Inc. does not warrant the use of this publication. For
some phone images, a third-party database and image library, Copyright © 2007-2009 Aeleeta's Art and Design
Studio, is used. This database and image library cannot be distributed separate from the MobileIron product.

“MobileIron,” the MobileIron logos and other trade names, trademarks or service marks of MobileIron, Inc.
appearing in this documentation are the property of MobileIron, Inc. This documentation contains additional
trade names, trademarks and service marks of others, which are the property of their respective owners. We do
not intend our use or display of other companies’ trade names, trademarks or service marks to imply a
relationship with, or endorsement or sponsorship of us by, these other companies.

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 3

Revision history

Date Revision

August 11, 2021 Added known issue AP-5702. See AppConnect 4.8.0 for iOS SDK revision
history.

TABLE 1. REVISION HISTORY

Revision history

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 4

Contents
Revision history 3

Contents 4

New features and enhancements 20

Introducing the MobileIron AppConnect for iOS SDK 21

AppConnect for iOS overview 21

Where to get the AppConnect for iOS SDK 22

Secure app features 22

AppConnect for iOS SDK advantages 23

64-bit and 32-bit app support 24

MobileIron AppConnect components 24

Using a secure app 25

App responsibilities 26

MobileIron client app and AppConnect library responsibilities 26

AppConnect for iOS SDK variants 26

AppConnect for iOS SDK contents 26

Header files in AppConnect framework 28

Header files in AppConnectExtension framework 31

AppConnect for iOS architecture 32

The MobileIron client app and AppConnect apps 34

App checkin and the MobileIron client app 34

The auto-lock timeout and the MobileIron client app 35

Product versions required 35

Securing and managing the app using the AppConnect library 36

Authorization 37

AppConnect passcode and Touch ID/Face ID policy 38

Configuration specific to the app 39

Contents

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 5

AppTunnel 39

AppTunnel supports only NSURLConnection and NSURLSession 40

Accessing sockets directly does not use AppTunnel 40

App’s responsibilities when using AppTunnel 41

AppTunnel supports redirects and authentication requests on HTTP/S upload 41

AppTunnel with TCP tunneling 41

Certificate authentication to enterprise services 41

Supported networking methods 41

Unsupported networking methods 42

Data loss prevention policies 42

Custom keyboard control 43

Data protection 44

AppConnect-related data 44

App data files 44

Log messages 45

Optional: Avoiding pasteboard notifications 46

Configuring an App Group on the Apple Developer portal 47

Add App Group to Info.plist 48

Getting started with the AppConnect for iOS SDK 49

Getting started tasks 49

Before you begin adding the AppConnect SDK to your app 49

First-time use of SDK in your app 50

Task lists for upgrading the SDK in your app 50

SDK 3.6 and later upgrade task list 50

SDK 3.1 through 3.5 upgrade task list 51

Getting started task list 51

Add AppConnect files and settings to your Xcode project 52

Add your own libcrypto.a, libProtocolBuffers.a, and libssl.a libraries if needed 52

Register as a handler of the AppConnect URL scheme 53

Contents

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 6

Declare the AppConnect URL schemes as allowed 53

Add AppConnect-related entries to your Info.plist 54

Enable screen blurring 54

Allow Face ID 54

Use AppConnect’s UIApplication subclass 55

Initialize the AppConnect library 55

Wait for the AppConnect singleton to be ready 56

Optional: Specify app permissions and configuration in a plist file 57

Using your own UIApplication subclass 60

Using the AppConnect framework in a Swift app 60

First time use of SDK in your Swift app 60

Tasks for upgrading the SDK in your Swift app 62

Troubleshooting 63

AppConnect(ACURLSessionDataDelegateProxy.o)' does not contain bitcode. 63

Lexical or preprocessor issue when building your app 63

App crashes in call to -startWithLaunchOptions: 64

Application error: Unable to communicate with the application 64

App crashes due to uncaught ACPropertyAccessException 64

Developing third-party dual-mode apps 66

What is a dual-mode app? 66

Dual-mode sample app 67

Dual-mode app states 68

Data encryption states 69

Actions when changing to the Encrypted state 70

Actions when changing to the Unencrypted state 70

High-level dual-mode app behavior 71

When the app launches for the first time 71

When an app subsequently launches 71

User requests to switch to Non-AppConnect Mode 72

Contents

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 7

User requests to switch to AppConnect Mode 73

Data loss prevention policy handling 73

Dual-mode API details 73

The ACManagedPolicy enumeration 74

The managedPolicy property 74

Dual mode methods 74

The +shouldStartAppConnect: class method 75

The -appConnect:managedPolicyChangedTo: callback method 75

The stop method 75

The retire method 76

API call sequence when the app launches 76

API call sequence when user requests Non-AppConnect Mode 78

API call sequence when user requests AppConnect Mode 78

AppConnect for iOS API 80

The AppConnect interface 81

AppConnect-related notifications 81

Notification methods in the AppConnectDelegate protocol 82

Notification acknowledgments 82

Multithread support 83

AppConnect ready API details 84

The ready property 84

Impacted instance properties 84

The -appConnectIsReady: callback method 84

Pseudocode for -isAppConnectReady: 85

Authorization API details 86

The ACAuthState enumeration 86

The authState and authMessage properties 86

Authorization methods 87

The -appConnect:authStateChangedTo:withMessage: callback method 87

Contents

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 8

The -authStateApplied:message: acknowledgment method 88

The -displayMessage: method 88

App-specific configuration API details 89

The config property 89

App-specific configuration methods 89

The -appConnect:configChangedTo: callback method 89

The -configApplied:message: acknowledgment method 90

Pasteboard policy API details 90

The ACPasteboardPolicy enumeration 90

Impact on the pasteboard policy of secure services availability 91

The pasteboardPolicy property 91

Pasteboard policy methods 92

The -appConnect:pasteboardPolicyChangedTo: callback method 92

The -pasteboardPolicyApplied:message: acknowledgment method 93

The -appConnect:copyAttemptedWhenUnauthorized: callback method 93

Drag and drop policy API details 93

Drag and drop policy method 94

Open In policy API details 94

Overview of Open In handling 95

The ACOpenInPolicy enumeration 96

The openInPolicy and openInWhitelist properties 96

Open In policy methods 97

The -appConnect:openInPolicyChangedTo:whitelist: callback method 97

The -openInPolicyApplied:message: acknowledgment method 97

The -appConnect:openInAttemptedWhenACOpenInPolicyBlocked: callback method 98

The -appConnect:openURLAttemptedWhenUnauthorizedForURL: callback method 98

Info.plist key related to the Open In policy 99

Open From policy API details 99

Overview of Open From handling 99

Contents

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 9

The ACOpenFromPolicy enumeration 100

The openFromPolicy and openFromWhitelist properties 100

Open From policy methods 101

The -appConnect:openFromPolicyChangedTo:whitelist: callback method 101

The -openFromPolicyApplied:message: acknowledgment method 102

The -appConnect:openFromAttemptedWhenACOpenFromPolicyBlocked: callback method 102

Print policy API details 103

The ACPrintPolicy enumeration 103

The printPolicy property 103

Print policy methods 103

The -appConnect:printPolicyChangedTo: callback method 103

The -printPolicyApplied:message: acknowledgment method 104

Log messages API details 104

The ACLogLevel enumeration 104

Log level descriptions and examples 104

Sensitive data examples 106

The logLevel property 106

Log level methods 107

The -appConnect:logLevelChangedTo: callback method 107

logAtLevel class methods 107

-logAtLevel:format:args: example 108

Log level methods and dual mode apps 109

Secure services API details 109

The ACSecureServicesAvailability enumeration 109

The ACSecureFileIOPolicy enumeration 109

The secureServicesAvailability and secureFileIOPolicy properties 109

Secure services methods 111

The -appConnect:secureServicesAvailabilityChangedTo: callback method 111

The -appConnect:secureFileIOPolicyChangedTo: callback method 111

Contents

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 10

The -secureFileIOPolicyApplied:message: acknowledgment method 112

Version property 112

Getting upload status for tunneled HTTP/S requests 112

AppConnect library behavior when using AppTunnel 113

Upload status API overview 113

The AppConnectNetworkingDelegate protocol 113

The -setNetworkingDelegate: method 114

Caching tunneled URL responses 114

AppConnectUIApplication class 115

Using your own UIApplication subclass 115

originalDelegate property (deprecated) 115

Encryption keys for custom cryptography 116

Overview of encryption keys for custom cryptography 116

The -derivedAppKeyWithIdentifier:error: method 117

The -derivedSharedKeyWithIdentifier:error: method 117

Error returns for derived key methods 117

Deprecated custom cryptography methods 118

The -derivedAppKey:withIndex: method (deprecated) 118

The -derivedSharedKey:withIndex: method (deprecated) 118

Securing sensitive data such as encryption keys 118

Coding your app to secure sensitive data 119

Configuring the MobileIron server to secure sensitive data for your app 120

Debugging ACSensitiveData usage 120

iOS active state change notifications due to AppConnect control switches 121

Situations that trigger the state change notifications 121

Secure file I/O API details 121

POSIX-style secure file APIs 122

Additional error returns using ACSecureFileLastError() 123

ACFileHandle class for AppConnect secure file I/O 126

Contents

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 11

Overridden and added NSFileHandle methods 126

ACFileHandle example 129

Objective-C categories for AppConnect secure file I/O 130

NSFileManager category 130

NSData (ACSecureFile) category 133

NSData (ACSharedSecureFile) and ACFileHandle (ACSharedSecureFile) categories 135

NSKeyedArchiver category 139

NSKeyedUnarchiver category 141

NSDictionary category 141

NSMutableDictionary category 143

NSArray category 145

NSMutableArray category 147

NSError objects that secure Objective-C methods return 148

Sharing secure files from an extension 149

Setting up the MobileIron server for sharing files from an extension 150

Setting up the provider app’s Info.plist 150

Coding the provider app to share secure files with its extension 151

Coding the extension to share files with the host app 153

Coding the host app to access the shared file 157

AppTunnel diagnostic API details 159

Running an AppTunnel diagnostic 160

-diagnoseTunnelingForURL:resultHandler: parameters 161

-diagnoseTunnelingForURL:resultHandler: return value 161

The result handler for diagnostic runs 162

The ACTunnelingDiagnosticResult class 162

The ACTunnelingDiagnosticResultCode enumeration 163

AppTunnel configuration troubleshooting checklist for MobileIron Core 167

UIScene support 169

Best practices for using the AppConnect for iOS SDK 170

Contents

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 12

Display authorization status in the home screen 170

Allow the user to enter credentials manually 171

Use the AppConnectDelegate protocol for notifications 171

Limit the size of configuration data from the MobileIron server 172

Use the UIApplication’s delegate as you normally would 172

Consider limitations when using the iOS simulator 173

Enable the AppConnect library to blur screens when the app becomes inactive 174

Do not put secure data in the app bundle 174

Indicate to the user that the app is initializing 174

Reject custom keyboard control 174

Do not use UIWebView to upload sensitive data 175

Provide documentation about your app to the MobileIron server administrator 175

AppConnect library log messages 178

Informational log messages 178

API usage errors and warnings 178

Miscellaneous errors and warning 179

Developing AppConnect apps with Xamarin 179

Overview of using AppConnect with Xamarin apps 180

Available C# bindings 180

Xamarin AppConnect sample apps 181

How to include the Xamarin C# binding in your Xamarin project 181

How to initialize your Xamarin app to use AppConnect C# APIs 182

Register as a handler of the AppConnect URL scheme 182

Declare the AppConnect URL scheme as allowed 183

Add AppConnect-related entries to your Info.plist 183

Enable screen blurring 183

Allow Face ID 184

Use AppConnect’s UIApplication subclass 184

Initialize the AppConnect library 185

Contents

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 13

Edit your AppDelegate source file 185

Create a subclass of AppConnectDelegate 185

Modify your UIApplicationDelegate subclass 186

Wait for the AppConnect singleton to be ready 187

Optional: Specify app permissions and configurations in a plist file 187

Create the AppConnect.plist in Xamarin Studio 188

Edit the AppConnect.plist 189

Convert the AppConnect.plist to binary format 190

AppTunnel support in Xamarin apps 191

AppTunnel Diagnostic API for Xamarin 192

Set up your app to use the AppTunnel Diagnostic API for Xamarin 192

Run the API 192

API Response 192

Sample response 195

FIPS compliance in an AppConnect SDK app 196

Testing for third-party app developers 197

Third-party AppConnect app testing overview 197

Set up MobileIron Core 198

Login to the Admin Portal 198

Enable AppConnect on MobileIron Core 198

Configure the AppConnect global policy 199

Create an AppConnect container policy 199

Set up your end-user device 199

Set up Mobile@Work on an iOS device 200

Install your app on the device 200

Set up the AppConnect passcode on the device 200

Test authorization status handling 200

Change the status to authorized or unauthorized 200

Change the status to retired 201

Contents

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 14

Reauthorize a retired app 202

Test data loss prevention policy handling 203

Test AppConnect configuration change handling 206

Create an AppConnect app configuration 206

Update the AppConnect app configuration 207

Test using AppTunnel 208

Enable AppTunnel on MobileIron Core 208

Use an existing certificate 209

Generate a certificate 209

Create a certificate authority for using AppTunnel with HTTP/S tunneling 209

Create a local certificate enrollment setting 210

Configure the Sentry with an AppTunnel service 210

Configure the AppTunnel service in the AppConnect app configuration 212

Test logging messages to the console or files 213

Log levels 213

Debug code for verbose and debug log levels 213

Logging to files 214

Log file details 214

Configuring logging to files 214

Pushing the new log level to the device 215

Activating verbose or debug logging on the device 215

Sending log files in an email 217

Test the app documentation 218

Testing for in-house app developers 219

In-house AppConnect app testing overview 219

Set up MobileIron Core 220

Login to the Admin Portal 220

Enable AppConnect on MobileIron Core 220

Create a label for testing your app 221

Contents

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 15

Upload your app to MobileIron Core if you use AppConnect.plist 221

Verify your AppConnect.plist settings 221

Configure the AppConnect global policy 222

Create an AppConnect container policy, if necessary 222

Set up your end-user device 223

Set up Mobile@Work on an iOS device 223

Install your app on the device 223

Set up the AppConnect passcode on the device 223

Test authorization status handling 224

Change the status to authorized or unauthorized 224

Change the status to retired 225

Reauthorize a retired app 226

Test data loss prevention policy handling 226

Test AppConnect configuration change handling 229

Create an AppConnect app configuration 230

Update the AppConnect app configuration 231

Test using AppTunnel 231

Enable AppTunnel on MobileIron Core 232

Use an existing certificate 232

Generate a certificate 232

Create a certificate authority for using an AppTunnel with HTTP/S tunneling 232

Create a local certificate enrollment setting 233

Configure the Sentry with an AppTunnel service 234

Configure the AppTunnel service in the AppConnect app configuration 235

Test logging messages to the console or files 236

Log levels 236

Debug code for verbose and debug log levels 237

Logging to files 237

Log file details 237

Contents

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 16

Configuring logging to files 237

Pushing the new log level to the device 238

Activating verbose or debug logging on the device 238

Sending log files in an email 241

Test the app documentation 241

Derived credential handling 242

Derived credential handling overview 242

Derived credential header files 243

Before adding derived credentials code 243

Making your app an AppConnect app 243

Declaring the appConnectdc URL scheme as allowed 244

Registering as a handler of a URL scheme you define 244

Sending derived credentials to the MobileIron client 245

Handling the custom URL scheme in your app delegate 245

Checking if the MobileIron client supports derived credentials 246

Checking if sending credentials to MobileIron client is currently allowed 247

Getting a derived credential 247

Preparing a certificates array 248

Preparing an ACDerivedCredential object 249

Creating an ACDervicedCredentialService object 250

Sending the certificates to the MobileIron client 251

Handling secure services becoming available 252

AppConnect for iOS SDK revision history 253

AppConnect 4.8.0 for iOS SDK revision history 253

New features and enhancements summary 253

Resolved issues 254

Known issues 254

Limitations 255

AppConnect 4.7.0 for iOS SDK revision history 255

Contents

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 17

New features and enhancements summary 255

Resolved issues 255

Known issues 255

Limitations 256

AppConnect 4.6.0 for iOS SDK revision history 256

New features summary 257

Resolved issues 257

AppConnect 4.5.3 for iOS SDK revision history 257

Resolved issues 257

AppConnect 4.5.2 for iOS SDK revision history 257

AppConnect 4.5.1 for iOS SDK revision history 258

AppConnect 4.5.0 for iOS SDK revision history 258

Resolved issues 258

Known issues 258

AppConnect 4.4.2 for iOS SDK revision history 258

Resolved issues 258

Known issues 259

AppConnect 4.4.1 for iOS SDK revision history 259

Resolved issues 259

Known issues 259

AppConnect 4.4.0 for iOS SDK revision history 259

New features summary 259

Resolved issues 260

Limitations 260

AppConnect 4.3.1 for iOS SDK revision history 261

Resolved issues 261

AppConnect 4.3.0 for iOS SDK revision history 261

New features 261

AppConnect 4.2.1 for iOS SDK revision history 261

Contents

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 18

New features 261

Limitations 262

AppConnect 4.2 for iOS SDK revision history 262

New features 262

Resolved issues 262

Known issues 262

AppConnect 4.1.1 for iOS SDK revision history 262

Resolved issues 262

Known issues 263

AppConnect 4.1 for iOS SDK revision history 263

New features 263

Certificate pinning support 263

Lock AppConnect apps when screen is off 263

Overriding the Open In Policy for openURL: with the mailto: scheme 263

SwiftFileSharing demonstrates sharing secure files from an extension 264

AppConnect 4.0 for iOS SDK revision history 264

New features 264

iOS 8 no longer supported 264

Dynamic frameworks 264

Swift support 265

Secure file sharing from an extension 265

Drag and Drop data loss prevention policy support 265

New callback method -openURLAttemptedWhenUnauthorizedForURL: 265

Native email control using the Open In DLP policy 266

App extension control using the Open In DLP policy 266

Custom keyboard use controlled by MobileIron server 266

Screen blurring 266

Requirement for Face ID usage Info.plist entry 267

Support for sending AppConnect logs from Mobile@Work 267

Contents

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 19

Securing sensitive data such as encryption keys 267

New category ACFileHandle (ACSharedSecureData) 267

New custom cryptography methods 268

Automatic policy status updates sent to MobileIron server 268

Resolved issues 268

Known issues 269

Limitations 269

AppConnect 3.5 for iOS SDK revision history 269

New features 269

iOS 11 compatibility 269

Open In changes 269

Sample app Xcode projects now compatible with Xcode 8.3 270

Resolved issues 270

Limitations 270

Releases prior to AppConnect 3.5 for iOS SDK revision history 270

Contents

1

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 20

New features and enhancements

This guide documents the following new features and enhancements:

l Distribution using XCFramework: The AppConnect SDK is distributed using XCFramework. As a
result, the SDK has the following updates:

o The sample apps are updated to use the new SDK.

o The test apps are updated to use the new SDK.

o Removed the AppConnectResources.bundle.

o Removed the post_embed_actions.sh shell script.

o AppConnect.framework is replaced with AppConnect.xcframework.

o AppConnectExtension.framework is replaced with AppConnectExtension.xcframework.
Actions and references for AppConnectResources.bundle and post_embed_actions.sh shell script are
removed from the following sections -

o AppConnect for iOS SDK contents

o SDK 3.1 through 3.5 upgrade task list

o Add AppConnect files and settings to your Xcode project
See Apple documentation on XCFrameworks integration:
https://help.apple.com/xcode/mac/11.4/#/dev51a648b07

For a complete list of new features, known and resolved issues, and limitations, see AppConnect for iOS SDK
revision history.

2

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 21

Introducing the MobileIron AppConnect for
iOS SDK

l AppConnect for iOS overview
l Product versions required
l Securing and managing the app using the AppConnect library

AppConnect for iOS overview
MobileIron AppConnect for iOS provides a software development kit (SDK) for securing and managing
enterprise applications on mobile devices. These secure enterprise apps are called AppConnect apps or secure
apps.

You can develop an AppConnect app for apps written using:

l Objective-C, by using the AppConnect for iOS Objective-C APIs.
l Swift, by using the Swift interfaces that correspond to the AppConnect for iOS Objective-C APIs. These
Swift interfaces are automatically generated by Xcode when you add the AppConnect framework into
your Xcode project.

l the Xamarin development platform, using Xamarin C# bindings of the AppConnect for iOS Objective-
C APIs.

l Cordova (or Phonegap), by using the AppConnect for iOS Cordova Plugin, described in theMobileIron
AppConnect for iOS Cordova Plugin Developers Guide.

NoteTheFollowing:

l If your AppConnect app is to be distributed from the Apple App Store, due to Apple App Store requirements,
your app is required to work as a regular app in addition to working as an AppConnect app.
See Developing third-party dual-mode apps.

l If your app uses an older version of the AppConnect for iOS SDK,MobileIron recommends that you always
rebuild your app with the current version of the SDK. Using the current version ensures the app contains all
new features, improvements, and resolved issues.

l An Apple Developer Enterprise Program account is required to distribute in-house apps. See Apple
Developer Enterprise Program.

https://developer.apple.com/programs/enterprise/
https://developer.apple.com/programs/enterprise/

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 22

Where to get the AppConnect for iOS SDK

The AppConnect for iOS SDK ZIP flle is available at help.mobileiron.com in the Software tab.

Check for the latest updates to this document and other developer resources on:
https://developer.mobileiron.com.

The SDK is also available at https://support.mobileiron.com/support/CDL.html.

Documentation is also available at https://support.mobileiron.com/docs/appconnect/.

Legal notices are also available on https://support.mobileiron.com/copyrights/ACe.

Secure app features

Secure enterprise apps that are built using the SDK can:

l Receive app-specific configuration information from the MobileIron server.
This capability means that device users do not have to manually enter configuration details that the app
requires. By automating this process for the device users, each user has a better experience when
installing and setting up apps. Also, the enterprise has fewer support calls, and the app is secured from
misuse due to configuration. This feature is also useful for apps which do not want to allow the device
users to provide certain configuration settings for security reasons.

l Tunnel network connections to servers behind an enterprise’s firewall.
This capability means that device users do not have to separately set up VPN access on their devices to
use the app.

l Authenticate an app user to an enterprise service.
This capability means that AppConnect app users do not have to enter login credentials to access
enterprise resources.

l Handle data loss prevention.
The MobileIron server administrator decides whether an app can copy content to the iOS pasteboard,
use the document interaction feature, receive documents from other apps (Open From) use drag and
drop, or print. The AppConnect library enforces the pasteboard, Open In, Open From and drag and drop
policies. The app enforces the print policy.

l Control custom keyboard use by your app.
The MobileIron server administrator can choose whether an app can use custom keyboards, and the
AppConnect library enforces the choice. If the administrator does not configure this choice, your app can
choose to reject custom keyboard use.

l Blur the app’s screens when the app is not in the foreground.
This blurring occurs if you specify a particular key in your Info.plist. The AppConnect library then
enforces this behavior, which can be overridden by the MobileIron server administrator.

Where to get the AppConnect for iOS SDK

https://developer.mobileiron.com/
https://support.mobileiron.com/support/CDL.html
https://support.mobileiron.com/docs/appconnect/
https://support.mobileiron.com/copyrights/ACe

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 23

l Protect the app’s data independent of device level encryption.
You can protect your app’s data using APIs provided by the AppConnect for iOS SDK. This secure file
I/O capability means that data encryption for your app is not dependent on the device having a device
passcode. Note that the AppConnect library and the MobileIron client app protect AppConnect-related
data, such as configurations and certificates, without any special actions by the app. The secure file I/O
APIs also allow you to share encrypted data among AppConnect apps.

l Obtain derived keys for custom encryption.
If your app uses custom cryptography, you can get derived encryption keys from the AppConnect library.
This feature is useful for legacy apps that cannot easily convert to using the SDK’s secure file I/O APIs.
Because the keys are derived, accidental leaks have limited damage, and the keys are not weakened by
brute force attacks.

l Secure sensitive data like encryption keys and passwords
The AppConnect for iOS SDK provides APIs for heightened security of especially sensitive data. These
APIs use Apple hardware capabilities (Apple’s Secure Enclave) to reduce the sensitive data’s attack
surface, because the data is never stored in plain-text in memory.

l Log messages to the device’s console and files.
By using APIs provided by the AppConnect for iOS SDK, your app can log messages of different severity
levels to the device’s console. The MobileIron server administrator decides the severity levels that are
written to the console, and whether the logs are also written to files.

l Provide AppTunnel diagnostics.
By using APIs provided by the AppConnect for iOS SDK, your app can log or display diagnostic data
about your app’s AppTunnel configuration and usage.

l Be FIPS compliant.
See FIPS compliance in an AppConnect SDK app.

l Deliver derived credentials to the MobileIron client app.
This capability is only for apps that obtain derived credentials from a derived credential provider and
deliver the credentials to the MobileIron client app. Very few apps implement this capability. How to
implement this capability is described in Derived credential handling.

AppConnect for iOS SDK advantages

With the AppConnect for iOS SDK:

l You can focus on application logic.
The SDK handles low-level, complex work such as authentication to access AppConnect apps,
certificate authentication to enterprise resources, tunneling, AppConnect passcode handling, data
encryption, and getting app-specific settings and configuration from the MobileIron server.

l You use a set of simple APIs to develop a secure enterprise app.

AppConnect for iOS SDK advantages

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 24

l The app does not have to interact directly with web service interfaces to get the information it needs to
behave as a secure enterprise app. Using the APIs, the app gets notified of any changes that the
administrator makes on the MobileIron server to controls and configuration.

l You can create one app, with one code base, that can behave as a secure app or a regular app. This
behavior is required for secure apps that are distributed from the Apple App Store.

l For more information, see Developing third-party dual-mode apps.

64-bit and 32-bit app support

Using the AppConnect for iOS SDK, you can build an app as a 64-bit app or as a 32-bit app.

MobileIron AppConnect components

The apps that you build with this SDK work with the following MobileIron components:

MobileIron
component

Description

MobileIron Core The MobileIron on-premise server which provides security and management for an
enterprise’s devices, and for the apps and data on those devices. An administrator
configures the security and management features using a web portal.

MobileIron Connected
Cloud

The MobileIron cloud offering that has the same functionality as MobileIron Core.

MobileIron Cloud The MobileIron cloud offering that provides similar functionality as MobileIron Core.
However, it does not support all the AppConnect features that MobileIron Core
supports.

Standalone Sentry The MobileIron server which provides secure network traffic tunneling from your
app to enterprise servers.

The Mobile@Work for
IOS app

A MobileIron client app that runs on an iOS device. It interacts with MobileIron Core
or Connected Cloud to get current security and management information for the
device. It interacts with the AppConnect library to communicate necessary
information to your app.

TABLE 2. MOBILEIRON COMPONENTS INVOLVED WITHAPPCONNECT APPS

64-bit and 32-bit app support

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 25

MobileIron
component

Description

The MobileIron Go app A MobileIron client app that runs on an iOS device. It interacts with MobileIron
Cloud to get current security and management information for the device. It
interacts with the AppConnect library to communicate necessary information to
your app.

The MobileIron
AppStation app

A MobileIron client app that runs on an iOS device. It interacts
with MobileIron Cloud. It can be used on the device instead of MobileIron Go when
the MobileIron Cloud tenant supports Mobile Apps Management (MAM) but not
Mobile Device Management (MDM). It interacts with the AppConnect library to
communicate necessary information to your app.

The AppConnect library The MobileIron library that your app uses to get AppConnect information. The
AppConnect library is part of the AppConnect framework that your app includes. It
provides your app management and security capabilities, and facilitates
communication between your app and the MobileIron client app.

TABLE 2. MOBILEIRON COMPONENTS INVOLVED WITHAPPCONNECT APPS (CONT.)

NoteTheFollowing:

l MobileIronCore,MobileIronConnectedCloud, andMobileIronCloudareeachalso referred toas
aMobileIron server.

l Mobile@Work,MobileIronGo,andMobileIronAppStationareeachalso referred toasaMobileIron
client app.

IMPORTANT: SomeAppConnect featuresdependon theversionofMobileIronCore,MobileIron Cloud,
Standalone Sentry, and theMobileIronclient app.

Using a secure app

A device user can use a secure enterprise app only if:

l The device user has been authenticated through the MobileIron server.
The user must use the MobileIron client app to register the device with the MobileIron server.
Registration authenticates the device user.

l The server administrator has authorized the device user to use the app.

l The device user has entered a secure apps passcode or Touch ID/Face ID.
The server administrator configures whether a secure apps passcode, also called the AppConnect
passcode, is required, and configures its complexity rules. The administrator also configures whether
using Touch ID/Face ID, if available on the device, is allowed instead of the AppConnect passcode.

The AppConnect passcode is not the same as the passcode used to unlock the device.

Using a secure app

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 26

App responsibilities

Your app is responsible for:

l enforcing the authorization settings
l handling the data loss prevention settings
l using the app-specific configuration
l ensuring the app’s data is protected by using the AppConnect secure file I/O APIs
l logging messages at the appropriate log level to protect sensitive data
l logging or displaying AppTunnel diagnostic information (optional)
l preserving and restoring the app’s state when control switches from the app to the MobileIron client app
and back

MobileIron client app and AppConnect library responsibilities

The MobileIron client app and the AppConnect library are responsible for:

l authenticating the user to the MobileIron server
l authenticating to enterprise services using certificates
l tunneling network connections
l AppConnect passcode and Touch ID / Face ID handling
l protecting AppConnect-related data, such as configurations and certificates
l managing the encryption key for the AppConnect secure file I/O
l controlling when sensitive log messages are written

AppConnect for iOS SDK variants

Due to Apple deprecating the UIWebView class, the AppConnect for iOS SDK is available in two variants. One
with UIWebView support and another without the support for UIWebView. The AppConnect SDK without
UIWebView support is available to use for apps that are submitted to the App Store.

AppConnect for iOS SDK contents

The AppConnect for iOS SDK is available as a ZIP file called AppConnectiOSSDK_V<version>_<build>.zip,
where:

l <version> is the version number of the SDK.
l <build> is the build number of the SDK.

The ZIP file contains the following:

App responsibilities

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 27

l AppConnect.xcframework, which you include in your app’s set of frameworks.
The AppConnect.xcframework includes the AppConnect library and header files.

l AppConnectExtension.xcframework, which you include in an extension of an AppConnect app to share
files with a host app. AppConnectExtension.xcframework includes the AppConnect extension library and
header files.

l A Documentation folder, which contains,

o this document
Check for updates to this document as described in Where to get the AppConnect for iOS SDK.

l A plugins folder, which contains,
o the cordova folder, which contains the Cordova plugin, sample apps, the install_ac_cordova_

plugin.sh script, and documentation

o the xamarin folder, which contains the Xamarin C# bindings, sample apps, and C# API
documentation.
See Developing AppConnect apps with Xamarin

l Notices.pdf, which contains SDK copyright information, software, and licenses.

l README_license.pdf, which contains the SDK license agreement.

l A Samples folder, which contains these sample apps:

o HelloAppConnect, which demonstrates how an app uses the AppConnect framework. It displays its
authorization status, its app configuration, and its data loss prevention policies.
The sample includes both an Objective-C and a Swift version of the app.

o DualMode example, which demonstrates the behavior of a dual-mode app.

o SwiftFileSharing app, a Swift app demonstrating AppConnect API usage, including sharing secure
files from an extension.

l The SDK_without_UIWebView folder which contains the iOS SDK variant that does not support
UIWebView. The folder includes the following:

o AppConnect.xcframework, which you include in your app’s set of frameworks.
The AppConnect.xcframework includes the AppConnect library and header files.

o AppConnectExtension.xcframework, which you include in an extension of an AppConnect app to
share files with a host app.
AppConnectExtension.xcframework includes the AppConnect extension library and header files.

o A plugins folder, which contains:
o the cordova folder, which contains the Cordova plugin, sample aspps, the install_ac_cordova_

plugin.sh script, and documentation

AppConnect for iOS SDK contents

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 28

o the xamarin folder, which contains the Xamarin C# bindings, sample apps, and C# API
documentation.
See Developing AppConnect apps with Xamarin

Header files in AppConnect framework

The following header files are included in the AppConnect framework:

Header file Description and related topics

ACCompatibility.h Header file for compatibility of AppConnect constants with
Swift.

Related topics

Using the AppConnect framework in a Swift app

ACDerivedCredential.h Described in Derived credential header files.

ACDerivedCredentialService.h Described in Derived credential header files.

ACError.h Defines the error domain and error codes used by the SDK’s
POSIX-style APIs, and Objective-C secure file subclasses and
categories.

Related topics

Secure file I/O API details

ACFileHandle.h Defines a NSFileHandle subclass for secure file I/O.

Related topics

Secure file I/O API details

ACFileHandle.h+ACSharedSecureFile.h Defines a category for sharing secure files with another
AppConnect app.

Related topics

Secure file I/O API details

ACSecureFile.h l Defines the POSIX-style secure file I/O APIs.
l Defines ACSecureFileLastError() for getting more
detailed error information about the POSIX-style secure
file I/O APIs.

Related topics

TABLE 3. HEADER FILES INAPPCONNECT FRAMEWORK (IN ALPHABETICAL ORDER)

Header files in AppConnect framework

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 29

Header file Description and related topics

Secure file I/O API details

ACSensitiveData.h Defines the classes for using heightened security for sensitive
data such as encryption keys.

Related topics

Securing sensitive data such as encryption keys

ACTypes.h Defines AppConnect typedef enumerations used in
AppConnectInterface.h.

ACUnwrappedFile.h Defines the class for a host app to use to unwrap a secure file
shared by an extension.

Related topics

Sharing secure files from an extension

ACWrappedAppKey.h Defines the class for a provider app to use to create an
encryption key for encrypting shared files in its extension.

Related topics

Sharing secure files from an extension

ACWrappedFileReadHandle.h Defines the class for a host app to use to get the file handle of
an extension’s shared, wrapped file.

Related topics

Sharing secure files from an extension

AppConnect.h Umbrella header file for the AppConnect framework, importing
all the header files in the framework.

AppConnect+Networking.h Defines the following APIs:

l APIs for receiving upload progress for HTTP/S requests
that use the AppTunnel feature.

l APIs for AppTunnel diagnostics

Related topics

l Getting upload status for tunneled HTTP/S requests
l AppTunnel diagnostic API details

AppConnectInterface.h l Defines the AppConnect interface that your app uses to

TABLE 3. HEADER FILES INAPPCONNECT FRAMEWORK (IN ALPHABETICAL ORDER) (CONT.)

Header files in AppConnect framework

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 30

Header file Description and related topics

get configuration and security-related information from
the AppConnect library.

l Defines the AppConnectDelegate protocol that you
implement to receive notifications from the AppConnect
library of changes to this information.

Related topics

l The AppConnect interface
l AppConnect-related notifications

AppConnectUIApplication.h Defines the UIApplication subclass that the AppConnect library
uses. An app imports this header file only if it uses a subclass
of UIApplication.

Related topics

l Use AppConnect’s UIApplication subclass
l AppConnectUIApplication class

NSArray+ACSecureFile.h Defines NSArray category interfaces for secure file I/O.

Related topics

Secure file I/O API details

NSData+ACSecureFile.h Defines NSData category interfaces for secure file I/O.

Related topics

Secure file I/O API details

NSData+ACSharedSecureFile.h Defines NSData category interfaces for secure file I/O when
sharing data among AppConnect apps.

Related topics

Secure file I/O API details

NSDictionary+ACSecureFile.h Defines NSDictionary category interfaces for secure file
I/O.

Related topics

Secure file I/O API details

TABLE 3. HEADER FILES INAPPCONNECT FRAMEWORK (IN ALPHABETICAL ORDER) (CONT.)

Header files in AppConnect framework

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 31

Header file Description and related topics

NSFileManager+ACSecureFile.h Defines NSFileManager category interfaces for secure file I/O.

Related topics

Secure file I/O API details

NSKeyedArchiver+ACSecureFile.h Defines NSKeyedArchiver category interfaces for secure file
I/O.

Related topics

Secure file I/O API details

NSKeyedUnarchiver+ACSecureFile.h Defines NSKeyedUnarchiver category interfaces for secure file
operations.

Related topics

Secure file I/O API details

NSMutableArray+ACSecureFile.h Defines NSMutableArray category interfaces for secure file
I/O.

Related topics

Secure file I/O API details

NSMutableDictionary+ACSecureFile.h Defines NSMutableDictionary category interfaces for secure
file I/O.

Related topics

Secure file I/O API details

TABLE 3. HEADER FILES INAPPCONNECT FRAMEWORK (IN ALPHABETICAL ORDER) (CONT.)

Header files in AppConnectExtension framework

The following header files are included in the AppConnectExtension framework:

Header files in AppConnectExtension framework

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 32

Header file Description and related topics

ACWrappedFile.h Defines the ACWrappedFile class used by extensions to share
secure files.

Related topics

Coding the extension to share files with the host app

AppConnectExtension.h Umbrella header file for the
AppConnectExtension.xcframework, importing all the header
files in the framework.

Related topics

Coding the extension to share files with the host app

AppConnectExtensionInterface.h Defines AppConnectExtensionInterface class and
AppConnectExtensionInterfaceProtocol.

Related topics

Coding the extension to share files with the host app

TABLE 4. HEADER FILES INAPPCONNECTEXTENSION FRAMEWORK (IN ALPHABETICAL ORDER)

AppConnect for iOS architecture

Your app, using the AppConnect library, interacts with the MobileIron client app. The MobileIron client app is
either Mobile@Work for iOS, MobileIron Go for iOS, or MobileIron AppStation for iOS. Mobile@Work interacts
with Core and MobileIron Go interacts with MobileIron Cloud. AppStation is used in certain use cases instead of
MobileIron Go to interact with MobileIron Cloud when a MobileIron Cloud tenant is set up for Mobile Apps
Management (MAM) but not Mobile Device Management (MDM). The AppConnect library also interacts with
Standalone Sentry for AppTunnel support.

The following diagram illustrates the interactions between an AppConnect app, the AppConnect library, the
MobileIron server, the MobileIron client, and the Standalone Sentry. The diagram uses MobileIron Core for the
server and Mobile@Work for the client.

AppConnect for iOS architecture

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 33

FIGURE 1. APPCONNECT APP INTERACTION

AppConnect for iOS architecture

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 34

NoteTheFollowing:

l Each secureenterpriseappcommunicateswithanAppConnect singletonobject,whichcontains
theAppConnect library.

l TheAppConnect library communicateswith theMobileIronclient app.
l Theappuses theAppConnectAPI togetmanagementand security-related information, suchas
whether the server administrator hasauthorized theapp to runon thedevice.

l Each secureenterpriseappcreatesanobject that implements theAppConnectDelegate
protocol. This object receives notifications from theAppConnect library. Thesenotifications tell the
appabout changes tomanagementand security-related information.

l TheMobileIronclient appcommunicateswith theMobileIron server togetmanagementand
security-related information.
TheMobileIron server provides security andmanagement for anenterprise’s devices, and for the
appsanddataon thosedevices. Anadministrator configures the security andmanagement
features usingawebportal.

l TheAppConnect object interactswitha Standalone Sentry if it is tunnelingnetwork connections to
anenterprise server behind the firewall.

The MobileIron client app and AppConnect apps

The MobileIron client app supports AppConnect apps, including the following tasks:

l It communicates with the MobileIron server to get management and security-related information and
passes the information to the AppConnect apps.
The MobileIron client app periodically does an app checkin with the MobileIron server to get this
information. The administrator configures the app checkin interval on the MobileIron server. It is the
maximum time between app checkins while an AppConnect app is running.

l It enforces the AppConnect passcode or Touch ID/Face ID.
The MobileIron client app prompts the device user to create an AppConnect passcode or Touch ID/Face
ID when first launching any AppConnect app. The administrator configures an auto-lock timeout on the
MobileIron server. After this period of inactivity, the MobileIron client app prompts the device user to
reenter his AppConnect passcode or Touch ID/Face ID.

When you run your AppConnect app, the MobileIron client app sometimes automatically launches to support app
checkin and the AppConnect passcode or Touch ID/Face ID. Understanding the MobileIron client app expected
behavior can help you when you test your AppConnect app.

App checkin and the MobileIron client app

On each app checkin, the MobileIron client app gets AppConnect policy updates for all the AppConnect apps
that have already run on the device. These updates include changes to data loss prevention policies, password
settings, app configurations, and AppTunnel settings.

For example, for Mobile@Work, these updates are due to changes on MobileIron Core to:

TheMobileIron client app andAppConnect apps

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 35

l the AppConnect global policy for the device.
l AppConnect container policies for each of the AppConnect apps that have run on the device.
l AppConnect app configurations for each of the AppConnect apps that have run on the device.
l the current authorization status for each of the AppConnect apps that have run on the device.

The MobileIron client app does an app checkin in the following situations:

l The device user launches an AppConnect app for the first time.
In this situation, the MobileIron client app finds out about the app for the first time, and adds it to the set of
AppConnect apps for which it gets updates.

l The app checkin interval expires while an AppConnect app is running.

l The app checkin interval expired while no AppConnect apps were running and then the device user
launches an AppConnect app.

In each of these situations, the MobileIron client app launches, and the device user sees the MobileIron client
app momentarily. Once the MobileIron client app has completed the app checkin, the device user automatically
returns to the AppConnect app.

The auto-lock timeout and the MobileIron client app

The MobileIron client app launches to prompt the device user for the AppConnect passcode or Touch ID/Face ID
in the following situations:

l The auto-lock (inactivity) timeout expires while the device is running an AppConnect app and the
AppConnect passcode, or Touch ID/Face ID, is the login mechanism.

If the device user is interacting with the app, the auto-lock timeout does not expire. This case occurs only when
the device user has not touched the device for the duration of the timeout interval.

l The device user used the MobileIron client app to log out of AppConnect apps, and then launches an
AppConnect app.

l The server administrator has changed the complexity rules of the AppConnect passcode, and an app
checkin occurs.

In each of these situations, the MobileIron client app launches, and presents the device user with a screen for
entering his AppConnect passcode or Touch ID/Face ID. After the device user enters the passcode or Touch
ID/Face ID, the device user automatically returns to the AppConnect app.

Product versions required
To develop and deploy an app that uses AppConnect for iOS, you need certain products. MobileIron supports a
set of product versions, and another set of product versions are compatible with apps built with this version of the
AppConnect for iOS SDK.

The auto-lock timeout and theMobileIron client app

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 36

l Supported product versions: The functionality of the product and version with currently supported
releases was systematically tested as part of the current release and, therefore, will be supported.

l Compatible product versions: The functionality of the product and version with currently supported
releases has not been systematically tested as part of the current release, and therefore not supported.
Based on previous testing (if applicable), the product and version is expected to function with currently
supported releases.

The following table summarizes supported and compatible product versions. This information is current at the
time of this release. For MobileIron product versions released after this release, see that product version's
release notes for the most current support and compatibility information.

Product Supported versions Compatible versions

iOS 12.0 - 14.4 11

Xcode

(for building apps that use the
AppConnect for iOS SDK)

12 11

MobileIron Core and
Connected Cloud

11.00.0, 11.1.0.0 10.3.0.0 - 10.8.0.0

Standalone Sentry 9.12.0 9.5.0 - 9.10.0

Mobile@Work for iOS 12.11.1, 12.11.10 12.1.0 -12.4.1

MobileIron Cloud 76 Not applicable

MobileIron Go 76 4.0.0 - 75

MobileIron AppStation 1.3.0 1.2.0

TABLE 5. SUPPORTED AND COMPATIBLE PRODUCT VERSIONS FORAPPCONNECT SDK APPS

IMPORTANT: SomeAppConnect featuresdependon theversionofMobileIronCore,MobileIron Cloud,
Standalone Sentry, and theMobileIronclient app.

Securing and managing the app using the AppConnect library
AMobileIron server administrator configures how mobile device users can use secure enterprise applications.
The administrator sets the following app-related settings that impact your app’s behavior:

l Authorization
l AppConnect passcode and Touch ID/Face ID policy
l Configuration specific to the app
l AppTunnel

Securing andmanaging the app using the AppConnect library

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 37

l Certificate authentication to enterprise services
l Data loss prevention policies
l Custom keyboard control
l The log level and whether to log to files, described in Log messages

Additionally, the AppConnect library provides the following capabilities for your app:

l Data protection
The AppConnect library uses encryption to protect AppConnect-related data. You can choose to protect
your app’s sensitive data using AppConnect for iOS APIs.

l iOS active state change notifications due to AppConnect control switches

l APIs for diagnosing AppTunnel configuration and usage
See AppTunnel diagnostic API details.

The following steps show the flow of information from the MobileIron server to your app:

1. The MobileIron server administrator decides which app-related settings to apply to a device or set of
devices.

2. The MobileIron server sends the information to the MobileIron client app.

3. The MobileIron client app passes the information to the AppConnect library. The MobileIron client app
and the AppConnect library enforce the AppConnect passcode policy. The AppConnect library enforces
tunneling.

4. Using the AppConnect for iOS API, your app can find out the current settings and receive notifications of
changes.

Your app is responsible for:

l enforcing authorization
l handling the data loss prevention policies
l using the configuration specific to the app.
l protecting the app’s data independent of device level encryption by using the AppConnect secure file I/O
APIs

l logging messages to the console using the AppConnect logging APIs
l preserving the app’s state when control switches to the MobileIron client app and then back to the app
due to the AppConnect app check-in interval or auto-lock time expiring.

Authorization

Your app uses the AppConnect library to get the user’s authorization status for using the app and to be notified of
changes. For more information, see Authorization API details.

The MobileIron server administrator determines:

Authorization

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 38

l whether or not each device user is authorized to use each secure enterprise app.
If the user is not authorized, the app should not allow the user to access any secure data or functionality.
If the app handles only secure data and functionality, then the app does nothing more than display a
message that the user is not authorized to use the app.

l the situations that cause an authorized device user to become unauthorized.
These situations include, for example, when the device OS is compromised. the MobileIron client app
reports device information to the MobileIron server. The server then determines whether to change the
user to unauthorized based on security policies on Core.
When a user becomes unauthorized, the app should stop allowing the user access to any secure data or
functionality.

l the situations that retire the app.
Retiring an app means that the user is not authorized to use it, and the app removes all secure data
associated with the app.

When an app is retired, you remove all its secure data. When a user is unauthorized but the app is not retired,
you do not allow the user to access the data, but you do not have to remove it. The reason is that an
unauthorized user can become authorized again, and therefore the secure data should become available again.

AppConnect passcode and Touch ID/Face ID policy

The AppConnect library and the MobileIron client app enforce the passcode or Touch ID/Face ID, and the auto-
lock timeout. The only task for your app is to include Privacy - Face ID Usage Description in your app’s
info.plist. Beyond that plist addition, your app does not handle the AppConnect passcode or Touch ID/Face ID at
all.

The MobileIron server administrator determines:

l whether the AppConnect passcode or Touch ID/Face ID is required, which requires the device user to
enter a passcode or Touch ID/Face ID to access any secure enterprise apps.

l the complexity of the AppConnect passcode.
l the auto-lock (inactivity) timeout for the AppConnect passcode or Touch ID/Face ID.

The AppConnect library and the MobileIron client app enforce an AppConnect passcode or Touch ID/Face ID as
follows:

l The MobileIron server notifies the MobileIron client app when the server administrator has enabled an
AppConnect passcode or Touch ID/Face ID. The MobileIron client app prompts the user to set the
passcode, if required, the next time that the device user launches or switches to a secure enterprise app.

l The user is prompted to enter the passcode or Touch ID/Face ID when the user subsequently launches
or switches to a secure enterprise app but the auto-lock timeout has expired.

l The user is prompted to enter the passcode or Touch ID/Face ID when the auto-lock timeout expires
while the user is running a secure enterprise app.

AppConnect passcode and Touch ID/Face ID policy

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 39

l The MobileIron client app prompts the user to set the passcode, if required, the next time the device user
launches or switches to a secure enterprise app after the MobileIron server has notified the MobileIron
client app that the passcode’s complexity rules have changed.

Configuration specific to the app

Sometimes an app requires app-specific configuration. Some examples are:

l the address of a server that the app interacts with
l whether particular features of the app are enabled for the user
l user-related information from LDAP, such as the user’s ID and password
l certificates for authenticating the user to the server that the app interacts with

You determine the app-specific configuration that your app requires. Each configurable item is a key-value pair.
Each key and value is a string. A MobileIron server administrator specifies the key-value pairs for each app on
the server. The administrator applies the appropriate set of key-value pairs to a set of devices. Sometimes more
than one set of key-value pairs exists on the server for an app if different users require different configurations.
For example, the administrator can assign a different server address to users in Europe than to users in the
United States.

NOTE: When thevalue is acertificate, the valuecontains thebase64-encodedcontents of the
certificate,which is a SCEPor PKCS-12certificate. If thecertificate is passwordencoded, the server
automatically sendsanother key-valuepair. The key’s name is the string<nameof key for
certificate>_MI_CERT_PW. Thevalue is thecertificate’s password.

Your app uses the AppConnect library to get the configuration and to be notified of changes. Then your app
applies the configuration according to its requirements.

For more information, see App-specific configuration API details .

AppTunnel

Using MobileIron’s AppTunnel feature, a secure enterprise app can securely tunnel HTTP and HTTPS network
connections from the app to servers behind an organization’s firewall. A Standalone Sentry is necessary to
support AppTunnel with HTTP/S tunneling. The MobileIron server administrator handles all HTTP/S tunneling
configuration on the server. Once the administrator has configured tunneling for the app on the server, the
AppConnect library, the MobileIron client app, and a Standalone Sentry handle tunneling for the app.

Your app accesses its enterprise servers as it normally would using NSURLConnection or NSURLSession. Your
app typically does not take any special actions related to tunneling. Although your app uses a server address
that results in tunneling, your app does not know that tunneling is occurring. Typically, the MobileIron server
administrator uses AppConnect’s app-specific configuration to specify the enterprise server URL that the app
uses. See Configuration specific to the app.

Configuration specific to the app

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 40

NOTE: Initialize theAppConnect librarybefore registeringanyNSURLProtocol subclasses that your app
uses. See Initialize theAppConnect library onpage 55.

Consider the following information to ensure that your app can successfully tunnel network connections:

l AppTunnel supports only NSURLConnection and NSURLSession
l Accessing sockets directly does not use AppTunnel
l App’s responsibilities when using AppTunnel
l AppTunnel supports redirects and authentication requests on HTTP/S upload
l AppTunnel with TCP tunneling

AppTunnel supports only NSURLConnection and NSURLSession

Always access servers using NSURLConnection or NSURLSession.

NoteTheFollowing:

l AppTunnelwithHTTP/S tunnelingdoes not support usingNSURLSession inabackground session. The
trafficdoes not reach its destination

l Youcanalso usenetworking libraries that useNSURLConnectionorNSURLSession. For example,
appscanuseAFNetworking 3.0because it usesNSURLSession.

l AppTunnelwithHTTP/S tunnelingdoes not supportWKWebViewobjects.

Accessing sockets directly does not use AppTunnel

AppTunnel with HTTP/S tunneling is not supported if the app:

l accesses sockets directly.
l uses APIs that access sockets directly.

In these cases, the app cannot access a host behind the enterprise’s firewall using AppTunnel with HTTP/S
tunneling.

For example, AppTunnel with HTTP/S tunneling is not supported with the following APIs:

l Apple’s reachability APIs that detect network and host connectivity.
l CFNetwork APIs
l ASIHTTPRequest

NOTE: Network connections using sockets for TCPconnections can tunnel databyusingAppTunnelwith
TCP tunneling. SeeAppTunnelwith TCP tunneling.

AppTunnel supports only NSURLConnection andNSURLSession

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 41

App’s responsibilities when using AppTunnel

For many apps, the app takes no special actions to use AppTunnel with HTTP/S tunneling. However, special
actions are required if your app requires:

l Cached responses for URL requests that use AppTunnel with HTTP/S tunneling.
To allow cached responses, see Caching tunneled URL responses.

l Upload status for HTTP/S requests that use AppTunnel with HTTP/S tunneling.
Use the APIs described in Getting upload status for tunneled HTTP/S requests.

AppTunnel supports redirects and authentication requests on HTTP/S upload

When an app uses AppTunnel with HTTP/S tunneling, AppTunnel handles the following HTTP/S upload
scenarios without any special actions by the app:

l HTTP/S redirect responses from the server (HTTP/S 3XX status code).
If a server redirects an HTTP/S upload request (tunneled or not) to another URL that the MobileIron
server administrator has configured for tunneling, the request is tunneled.

l Authentication required response from the server (HTTP/S 401 status code).
The AppTunnel feature handles sending a second HTTP/S request with authentication credentials.

AppTunnel with TCP tunneling

AppTunnel can tunnel TCP traffic between an app and a server behind the company’s firewall. AppTunnel with
TCP tunneling does not require an app to be an AppConnect app; both AppConnect apps and standard apps can
use AppTunnel with TCP tunneling.The MobileIron server administrator configures AppTunnel with TCP
tunneling, including installing MobileIron Tunnel (an iOS app) on the device. Your app takes no actions related to
using AppTunnel with TCP tunneling.

Certificate authentication to enterprise services

Without any development, an AppConnect app can send a certificate to identify and authenticate the app user to
an enterprise service when the app uses an HTTPS connection. The MobileIron server administrator configures
on the server which certificate for the app to use, and which connections use it. The AppConnect library, which is
part of every AppConnect app, makes sure the connection uses the certificate. Your app takes no action at all.

Supported networking methods

Certificate authentication to enterprise services is supported only if your app uses one of the following to access
the enterprise service:

l NSURLConnection
l NSURLSession

App’s responsibilities when using AppTunnel

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 42

Certificate authentication to enterprise services does not support using NSURLSession in a background
session.

l Networking libraries that use NSURLConnection or NSURLSession.
l UIWebView

Unsupported networking methods

Certificate authentication to enterprise services using other networking methods is not supported. For example,
the following are not supported:

l accessing sockets directly

l WKWebView and other APIs that access sockets directly
For example, these APIs are not supported: CFNetwork, ASIHTTPRequest, and Apple's reachability
APIs that detect network and host connectivity.

Data loss prevention policies

An app can leak data if it uses iOS features such as copying to the iOS pasteboard, document interaction (Open
In and Open From), and print capabilities. A MobileIron server administrator specifies on the server whether
each app is allowed to use each of these features.

Specifically:

l The print policy indicates whether the app is allowed to use: AirPrint, any future iOS printing feature, any
current or future third-party libraries or apps that provide printing capabilities.
Your app enforces the print policy by enabling or disabling printing capabilities based on the print policy.

l The pasteboard policy specifies whether your app is allowed to copy content to the iOS pasteboard. If
copying content is allowed, the policy specifies whether all apps, or only AppConnect apps, can paste
the copied content from the pasteboard.
The AppConnect library enforces the pasteboard policy. Your app disables or enables any special user
interfaces that allow copying.

l The drag and drop policy specifies whether AppConnect apps can drag content to all other apps, to only
other AppConnect apps, or not at all.
The AppConnect library enforces this policy. When the policy allows dragging content to only other
AppConnect apps, the AppConnect library notifies your app when the device user attempts to drag
content to a non-AppConnect app. Your app can then notify the device user of the situation.

l The Open In policy specifies the apps, including the extensions that apps provide, with which your app
can share documents. The policy specifies no apps, all apps, all AppConnect apps, or a set of apps. A
set of apps is called the whitelist. Whether your app can share documents with the native iOS mail app is
also controlled by the Open In policy.

Unsupported networkingmethods

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 43

The AppConnect library enforces the Open In policy. Your app disables or enables any special user
interfaces that give the user the option to use Open In.

l The Open From policy specifies the apps, including the extensions that apps provide, from which your
app can receive documents when the other app uses the Open In iOS feature. The policy specifies no
apps, all apps, all AppConnect apps, or a set of apps. A set of apps is called the whitelist.
The AppConnect library enforces the Open From policy. Your app informs the user about the Open From
policy if you want to.

The administrator applies the appropriate policies to a set of devices. Sometimes more than one set of policies
exists on the MobileIron server for an app if different users require different policies.

Your app uses the AppConnect library to get the data loss prevention policies and to be notified of changes.
Then your app handles the policies according to its requirements.

For more information, see:

l Pasteboard policy API details
l Drag and drop policy API details
l Open In policy API details
l Open From policy API details
l Print policy API details

Custom keyboard control

Custom keyboard extensions sometimes send data to servers when a device user enters data into an app. They
send this data for assistance with word-prediction, for example. To stop this potentially harmful data loss, the
MobileIron server administrator configures whether custom keyboards are allowed for an app by setting a key-
value pair in the app’s configuration. The key is called MI_AC_IOS_ALLOW_CUSTOM_KEYBOARDS. The key-
value pair is consumed by the AppConnect library; your app does not receive it.

When the key is present, the AppConnect library controls custom keyboard use according to the key’s value. If
the value is true, the AppConnect library allows the AppConnect app to use custom keyboards. If the value is
false, the AppConnect library does not allow custom keyboard use.

If the server administrator does not include the key-value pair for your app, the AppConnect library does not
allow the app to use custom keyboards.

Related topics

Reject custom keyboard control

Custom keyboard control

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 44

Data protection

AppConnect-related data

The MobileIron client app and the AppConnect library work together to use encryption to protect AppConnect-
related data, such as configurations and certificates, on the device.

The encryption key is not stored on the device. It is either:

l Derived from the device user’s AppConnect passcode.
l Protected by the device passcode if the administrator does not require an AppConnect passcode.
l Protected by the device passcode if the device user uses Touch ID/Face ID to access AppConnect apps.

If no AppConnect passcode or device passcode exists, the data is encrypted, but the encryption key is not
protected by either passcode.

Your app does not handle data protection for AppConnect-related data. the MobileIron client app and the
AppConnect library provide this data protection.

App data files

You can protect the contents of your app’s data files using secure file I/O APIs provided by the AppConnect for
iOS SDK. This secure file I/O capability means that data encryption for your app’s data, like the AppConnect-
related data, is not dependent on the device having a device passcode.

Like the AppConnect-related data, the encryption key is not stored on the device. It is either:

l Derived from the device user’s AppConnect passcode.
l Protected by the device passcode if the administrator does not require an AppConnect passcode.
l Protected by the device passcode if the device user uses Touch ID/Face ID to access AppConnect apps.

The administrator can require an AppConnect passcode, a device passcode, both passcodes, or neither. The
administrator can also allow a device user to use Touch ID/Face ID to access AppConnect apps, which requires
a device passcode to work. By using the secure file I/O APIs, you know that your app’s data is protected to the
extent that the administrator requires. If your app instead relies on iOS data protection to protect your app’s data,
data is not protected on devices that have no device passcode. Devices having no device passcode are not
uncommon when employees use their own devices at work.

NOTE: Whenusing secure file I/OAPIs, theexistenceofa file, its file name, its path, its approximate size, its
creationdate, and its lastmodificationdatearenot encrypted.Anyof these itemspossibly reveal
sensitive information.

The following table summarizes the protection of the data that AppConnect apps save on the device. Note that if
a device user uses Touch ID/Face ID to access AppConnect apps, a device passcode is available.

Data protection

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 45

Device passcode
but no
AppConnect
passcode

AppConnect
passcode but no
device passcode

Device passcode
and AppConnect
passcode

Neither a device
passcode or
AppConnect
passcode

SDK apps that
enable iOS data
protection (typical
behavior)

App data
encrypted

iOS encrypts the
data, but the
encryption key is
not protected.

App data
encrypted

iOS encrypts the
data, but the
encryption key is
not protected.

SDK apps that use
SDK-provided
secure file I/O

App data
encrypted

App data
encrypted

App data
encrypted

iOS encrypts the
data, but the
encryption key is
not protected.

TABLE 6. DATA ENCRYPTION OF APP DATA

Some of the secure file I/O APIs also support sharing the encrypted files with other AppConnect apps. These
APIs rely on an additional encryption group ID to create the encryption key. Only apps which use the same
encryption group ID can read the data. If you use these APIs to share encrypted files with other apps, you
provide an app-specific configuration key name to the MobileIron server administrator in your app
documentation. The MobileIron server administrator then provides your app and the other apps the same
encryption group ID through app-specific configuration for each app.

The SDK provides the following types of secure file I/O APIs:

l POSIX-style APIs
l Objective-C subclasses
l Objective-C class categories

Before your app uses these APIs, use the AppConnect library to get the status of:

l secure services
Currently, the only secure service is secure file I/O.

l secure file I/O

The AppConnect library notifies the app about changes in both statuses.

For more information, see Secure services API details.

NOTE: If your appuses customcryptography, youcangetencryption keys from theAppConnect library.
Formore information, see Encryption keys for customcryptography.

Log messages

The AppConnect for iOS SDK provides APIs for your app to use to log messages to the Apple System Log
facility, also known as the device’s console. The MobileIron server administrator can specify that the messages

Logmessages

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 46

are also logged to files on the device.

You specify the log level of each message. The log levels are, from least verbose to most verbose:

l Error
l Warning
l Status
l Info
l Verbose
l Debug

NoteTheFollowing:

l Error, warning and statusmessages are always logged to the console.

l Infomessages are logged to the console only if that level is specified by theMobileIron server administrator
in the app-specific configuration.

l Verbose and debugmessages are logged to the console only if both of the following are true:

o The server administrator specified the level and a debug code in the app-specific configuration.

o The device user enabled the level in theMobileIron client app using the debug code specified by the
server administrator. Note that the verbose or debug levels are disabled automatically after 24 hours.
The device user canmanually disable them sooner.

Because the verbose and debug levels require a debug code, you can include sensitive data inmessages
logged at those levels.

For details, including examples of the kinds of messages to log at each level, see Log messages API details.

Optional: Avoiding pasteboard notifications
To avoid pasteboard notifications on users' devices when using AppConnect apps, set up an App Group for your
AppConnect apps and update the app's Info.plist. App Groups are an iOS mechanism to share data between
apps. Setting up an App Group also reduces the amount of switching between the AppConnect app and the
MobileIron client. The following is an overview of the setup needed to avoid pasteboard notifications.

Overview

1. In the Apple Developer portal,

a. Create an App Group.

b. Add the App Group to your AppConnect app's App ID.

c. Update and download the Provisioning Profile.

2. Update the app to use the new Provisioning Profile.

Optional: Avoiding pasteboard notifications

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 47

3. Configure App Group capability and App Group for the app in Xcode.

NOTE: Ensure that theappgroupnameconfigured in Xcodematches theAppGroupname that
youconfigured in theAppleDeveloper Portal.

4. Add the App Group to the app's Info.plist.

For detailed instructions for each step, see the links in the following related topics.

Related topics

l For information about how to create an App Group, add it to your AppConnect app's App ID, and save
and download the updated Provisioning Profile for your app on the Apple Developer portal, see
Configuring an App Group on the Apple Developer portal

l For information about configuring App Group capability and App Groups for you app, see the following
Apple documentation:

o Adding Capabilities to Your App

o Configure app groups

l For information about adding the App Group to the app's Info.plist, see Add App Group to Info.plist.

The feature is available if the components are at the following version through the latest as supported by
MobileIron:

l The AppConnect app uses AppConnect 4.7.0 SDK.
l The iOS device uses iOS 14.
l The MobileIron client is one of the following

o MobileIron Go 5.5.1
o Mobile@Work 12.4.1

NOTE: AppConnectappscontinue touse thepasteboard if anAppGroup, asdescribed in this section, is
not set up.

Configuring an App Group on the Apple Developer portal

You create an App Group, add it to your AppConnect 's App ID, and save and download the updated
Provisioning Profile for your app on the Apple Developer portal.

Procedure

1. On the Apple Developer portal, go to Certificates, Identifiers & Profiles > Identifiers.

2. Select App Groups, and create an App Group.
When you create an App Group, you add a name and an Identifier for the App Group. The name can be
anything, as long as it is unique.

Configuring anAppGroup on the Apple Developer portal

https://developer.apple.com/documentation/xcode/adding_capabilities_to_your_app
https://help.apple.com/xcode/mac/current/#/dev8dd3880fe

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 48

3. After you create the App Group, go to Certificates, Identifiers & Profiles > Identifiers.

4. Select App IDs, and click the AppConnect app.

5. Select App Groups > Configure, and select the App Group to assign to the AppConnect app.

6. After you update the App Group for the AppConnect app, to Certificates, Identifiers & Profiles >
Identifiers.

7. Select Profiles, and click the provisioning profile for your app to edit.

8. Click Edit > Save > Download.

9. Double-click the Provisioning Profile in the Finder to import it into Xcode.

Add App Group to Info.plist

The App Group is created by the app developer in the Apple Developer Portal using their Apple developer
account. On the Apple developer portal, create an App Group and add it to your AppConnect apps.

Add the following key-value pair in the app’s Info.plist:

l MI_APP_CONNECT
This key is the root key, and its value is a dictionary of key-value pairs

l MI_AC_ACCESS_GROUP
This key provides the App Group Identifier that the AppConnect library uses to access the app's shared
container. The value is the app’s App Group Identifier.

Example

In the example, group.com.thirdparty.enterprise.ios.appconnect is the App Group Identifier.

AddAppGroup to Info.plist

3

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 49

Getting started with the AppConnect for iOS
SDK

l Getting started tasks
l Using the AppConnect framework in a Swift app
l Troubleshooting

Getting started tasks
Objective-C apps: Follow the instructions in Before you begin adding the AppConnect SDK to your app. Then
follow the instructions in either First-time use of SDK in your app or Task lists for upgrading the SDK in your app.

Swift apps: Follow the instructions in Before you begin adding the AppConnect SDK to your app. Then follow
the instructions in Using the AppConnect framework in a Swift app.

Xamarin apps: Follow the instructions in Before you begin adding the AppConnect SDK to your app. Then
follow the instructions in Developing AppConnect apps with Xamarin .

Once you have completed these tasks, your app is ready to use the AppConnect for iOS API to, for example,
enforce MobileIron server settings and apply app-specific configurations from the MobileIron server.

NOTE: If your app is aCordovaapp, use theAppConnect for iOSCordovaPlugin, described in the
MobileIronAppConnect for iOSCordovaPluginDevelopersGuide.

Before you begin adding the AppConnect SDK to your app

l Download the AppConnect for iOS SDK.
Download the latest version of the AppConnect for iOS SDK ZIP file to your app’s Xcode project folder or
other convenient location. The ZIP file is available at help.mobileiron.com in the Software tab.
The ZIP file is named AppConnectiOSSDK_V<version>_<build>.zip where:
o <version> is the version number of the SDK
o <build> is the build number of the SDK.

l Verify required product versions.
Be sure you have the required product versions for working with apps built with the AppConnect for iOS
SDK.
See Product versions required .

http://help.mobileiron.com/

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 50

l Support fast app switching.
Make sure your app supports fast app switching. Fast app switching means that the app can go into the
background for a short time without iOS terminating it. The AppConnect for iOS SDK requires that apps
support this feature. Most apps support fast app switching.
To ensure that your app supports fast app switching, in your app’s Info.plist, remove the
UIApplicationExitsOnSuspend key if it is present.

NOTE: Your appdoes not need to support anyof the UIBackgroundModes, suchas audioor voip

First-time use of SDK in your app

If you are adding the AppConnect for iOS SDK to your app for the first time, do the tasks in Getting started task
list.

Task lists for upgrading the SDK in your app

To upgrade from an app that uses a prior version of the AppConnect for iOS SDK do the following:

SDK version
from which
you are
upgrading

Upgrade task list

SDK 3.6 and
later

See SDK 3.6 and later upgrade task list

SDK 3.1
through 3.5

See SDK 3.1 through 3.5 upgrade task list.

SDK 2.4
through 3.0

1. Do the upgrade steps for SDK 3.1 through 3.5.

2. Recommended: If your app is a dual-mode app, modify the dual mode behavior to
include +shouldStartAppConnect:. For details, see Developing third-party dual-mode
apps.

3. Recommended: If your app enforced the Open In data loss prevention policy, note that
the AppConnect library now enforces the policy. Make appropriate code modifications.
For details, see Open In policy API details .

SDK 1.9.1
through 2.3.1

1. Do the steps for SDK 2.4 through 3.0.

2. Declare the AppConnect URL schemes as allowed

SDK 1.9.0 or
earlier

Refer to the 3.5 version of this guide, available at MobileIron AppConnect 3.5 for iOS SDK
App Developers Guide or contact MobileIron Technical Support.

TABLE 7. UPGRADE TASK LIST

SDK 3.6 and later upgrade task list

To upgrade from an app that uses a prior version of the AppConnect for iOS SDK do the following:

First-time use of SDK in your app

https://community.mobileiron.com/docs/DOC-6862
https://community.mobileiron.com/docs/DOC-6862

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 51

1. Replace the AppConnect.framework bundle in the project folder with the AppConnect.xcframework
bundle.

2. If you are using the AppConnectExtension.framework, replace the AppConnectExtension.framework
bundle in the project folder with the AppConnectExtension.xcframework bundle.

3. Declare the alt-appconnectURL scheme in your app’s Info.plist as another allowed URL scheme.
See Declare the AppConnect URL schemes as allowed.

SDK 3.1 through 3.5 upgrade task list

If your SDK is 3.1 through 3.5 use the following upgrade task list:

1. Replace the existing AppConnect.framework from your Xcode project with AppConnect.xcframework.

2. Remove the libProtocolsBuffer.a and libCrypto.a libraries from your Xcode project if you added them
only for making your app an AppConnect app. However, if you use specific versions of these libraries for
other reasons, or indirectly link to versions of these libraries, keep them in your project and make sure
they are linked before the AppConnect.xcframework.
The libCrypto.a that is part of the AppConnect.xcframework is FIPS compliant. Therefore, if your only
reason for linking in your own libCrypto.a is to be FIPS compliant, you can remove it.

3. Remove the following command from your Xcode project’sOther Linker Flags (in Linking under Build
Setting:
-force_load $(SRCROOT)/AppConnect.framework/AppConnect

4. Make sureOther Linker Flags include -ObjC because the AppConnect.xcframework is an Objective-C
framework.

5. Navigate to AppConnect.xcframework in the top-level of the extracted AppConnect SDK directory.

6. Drag and drop AppConnect.xcframework to Embedded Binaries in theGeneral settings of your Xcode
project’s target. When Xcode prompts you to choose options for adding the file, select Create groups.

7. Make sure Enable Bitcode is set to No in Build Options in the Build Settings of your Xcode project’s
target.

8. Include the boolean key MI_AC_PROVIDE_SCREEN_BLUR set to YES in your app’s info.plist. For
details, see Add AppConnect-related entries to your Info.plist.

9. Include Privacy - Face ID Usage Description to your app’s info.plist, with a string value indicating the
purpose of Face ID use. For example, add the value AppConnect. If you manually add this key, its
name is NSFaceIDUsageDescription.

10. Declare the alt-appconnectURL scheme in your app’s Info.plist as another allowed URL scheme.
See Declare the AppConnect URL schemes as allowed.

Getting started task list

NOTE: If youhaveanapp thatalreadyusesaprior versionof theAppConnect for iOS SDKandwant to
upgrade theapp touse thecurrent SDKversion, see Task lists for upgrading the SDK in your app.

SDK 3.1 through 3.5 upgrade task list

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 52

If you are adding the AppConnect for iOS SDK to your app for the first time, do the following tasks:

1. Add AppConnect files and settings to your Xcode project

2. Add your own libcrypto.a, libProtocolBuffers.a, and libssl.a libraries if needed

3. Register as a handler of the AppConnect URL scheme

4. Declare the AppConnect URL schemes as allowed

5. Add AppConnect-related entries to your Info.plist

6. Use AppConnect’s UIApplication subclass

7. Initialize the AppConnect library

8. Wait for the AppConnect singleton to be ready

9. Optional: Specify app permissions and configuration in a plist file.

Add AppConnect files and settings to your Xcode project

Do the following tasks to add AppConnect files and settings to your app’s Xcode project:

1. Make sureOther Linker Flags include -ObjC because the AppConnect.xcframework is an Objective-C
framework.

2. Navigate to AppConnect.xcframework in the top-level of the extracted AppConnect SDK directory.

3. Drag and drop AppConnect.xcframework to Embedded Binaries in theGeneral settings of your Xcode
project’s target.
When Xcode prompts you to choose options for adding the file, select Create groups.

4. Make sure Enable Bitcode is set to No in Build Options in the Build Settings of your Xcode project’s
target.

Add your own libcrypto.a, libProtocolBuffers.a, and libssl.a libraries if needed

The AppConnect.xcframework includes:

l the libcrypto.a library.
The included libcrypto.a library is FIPS compliant.

l the libProtocolBuffers.a library.
The included libProtocolBuffers.a library is by Booyah, Inc.

l the libssl.a library.

However, if you need specific versions of these libraries, you can add them to your Xcode project.

When you add one of these libraries to your Xcode project, make sure it is listed higher than
AppConnect.xcframework in your Xcode project in theGeneral tab under Linked Frameworks and Libraries.

AddAppConnect files and settings to your Xcode project

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 53

Alternatively, you can make sure your version of one of these libraries is used by adding a -force_load

command to the linker in Xcode. For example. in your Xcode project, in Build Settings, under Linking, inOther
Linker Flags, add:

-force_load "$(PROJECT_DIR)/dependencies/openssl_fips_ios/lib/libcrypto.a"

Register as a handler of the AppConnect URL scheme

Your app must handle the AppConnect URL scheme. Mobile@Work, MobileIron Go, and MobileIron AppStation
use this URL scheme to communicate with your app’s instance of the AppConnect library.

Register the AppConnect URL scheme by modifying the app’s Info.plist. Edit the key called URL types so that:

l the sub-item URL identifier has the value of your app’s bundle identifier
l the sub-item URL Schemes’ sub-item 0 has the value ac concatenated with your app’s bundle identifier

These key-value pairs are illustrated by the following excerpt from HelloAppConnect’s HelloAppConnect-
Info.plist:

NOTE: If youareediting the Info.plist file directly, it should include the following:

<key>CFBundleURLTypes</key>
<array>

<dict>
<key>CFBundleURLSchemes</key>
<array>

<string>ac$(PRODUCT_BUNDLE_IDENTIFIER)</string>
</array>

</dict>
</array>

Declare the AppConnect URL schemes as allowed

Declare the appconnect and the alt-appconnectURL schemes in your app’s Info.plist as allowed URL schemes.
Your app’s instance of the AppConnect library:

l uses the appconnect URL scheme to communicate with Mobile@Work or MobileIron Go.
l uses the alt-appconnect URL scheme to communicate with MobileIron AppStation.

To allow the appconnect and alt-appconnect URL schemes, add a key called LSApplicationQueriesSchemes as
shown in this example from HelloAppConnect’s HelloAppConnect-Info.plist:

Register as a handler of the AppConnect URL scheme

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 54

Add AppConnect-related entries to your Info.plist

l Enable screen blurring
l Allow Face ID

Enable screen blurring

The AppConnect library can automatically blur your app’s screen whenever it is not active. This security
measure protects the app’s data from being captured in screenshots. The AppConnect library blurs the screen
when
-applicationWillResignActive: is called and unblurs it when -applicationDidBecomeActive: is called.

To enable screen blurring, add the key MI_AC_PROVIDE_SCREEN_BLUR to your app’s Info.plist as a
Boolean. Set the value to YES.

When you set the Info.plist key MI_AC_PROVIDE_SCREEN_BLUR to YES, the MobileIron server
administrators can disable screen blurring by setting a key-value pair on the server for your app’s configuration.
The server key is MI_AC_ENABLE_SCREEN_BLURRING with the value false.

NOTE: If youalready implemented screenblurring in your app, remove that codeanduse theMI_AC_
PROVIDE_SCREEN_BLURplist key. Using theplist keyensures thatall AppConnectappsbehave
consistently.

Allow Face ID

Include Privacy - Face ID Usage Description to your app’s info.plist, with a string value indicating the purpose
of Face ID use. For example, add the value AppConnect. If you manually add this key, its name is
NSFaceIDUsageDescription.

AddAppConnect-related entries to your Info.plist

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 55

Server administrators can allow the use of Touch ID or Face ID instead of an AppConnect passcode. Therefore,
this Info.plist entry is required on iOS 11 through the most recently released version as supported by MobileIron.

Use AppConnect’s UIApplication subclass

To use AppConnect’s UIApplication subclass:

1. Open main.m for editing.

2. Add the following line to your import statements:
#import "AppConnect/AppConnect.h"

3. Change the third argument of the call to UIApplicationMain() to
kACUIApplicationClassName.
The third argument, the principalClassName argument, is the UIApplication class or subclass for the
app. For example, in the HelloAppConnect app provided with the AppConnect for iOS SDK, the
statement that calls UIApplicationMain is:

return UIApplicationMain(argc, argv, kACUIApplicationClassName,
NSStringFromClass([AppDelegate class]));

NOTE: If youusea subclass of UIApplication for your app, seeUsing your ownUIApplication subclass.

Initialize the AppConnect library

To initialize the AppConnect library for your app to use:

1. Open your AppDelegate source file and header file for editing.

2. Add the following line to your import statements in your AppDelegate header file:
#import "AppConnect/AppConnect.h"

3. Create a class that implements the AppConnectDelegate protocol.
Usually this class is also the AppDelegate for your app. For example, in AppDelegate.h in
HelloAppConnect, the AppDelegate class implements the AppConnectDelegate protocol.
@interface AppDelegate : UIResponder <UIApplicationDelegate, AppConnectDelegate>

Some of the methods of the AppConnectDelegate protocol are optional. Implement only the optional
methods that relate to your app’s functionality.

4. Call the static method +initWithDelegate: of the AppConnect class.The method takes as a parameter
an object of the class that implements the AppConnectDelegate protocol.
For example, in HelloAppConnect, in the AppDelegate class implementation, the method -

application:didFinishLaunchingWithOptions: calls +initWithDelegate: as follows:
[AppConnect initWithDelegate:self];

NOTE: If theclass that implements theAppConnectDelegateprotocol is not yourAppDelegate,
pass an instanceof that class insteadof self.

5. Save the singleton instance of the AppConnect library.

Use AppConnect’s UIApplication subclass

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 56

For example, in HelloAppConnect, the AppDelegate object saves the singleton instance in the
appConnect property:
[self setAppConnect:[AppConnect sharedInstance]];

6. Call the AppConnect singleton’s method -startWithLaunchOptions:.
The app must call this method from its AppDelegate’s method -

application:didFinishLaunchingWithOptions:, and must pass along its launchOptions parameter
value.
For example, in HelloAppConnect:
[self.appConnect startWithLaunchOptions:launchOptions];

After this step, the AppConnect singleton is initializing. However, the app cannot yet use the singleton’s
instance properties. The app can:

l use the AppConnect class properties.
l use the methods of the AppConnect singleton object.
l register any NSURLProtocol subclasses that the app uses.

If your app uses AppTunnel with HTTP/S tunneling, be sure this NSURLProtocol registration occurs after
initializing the AppConnect library.

7. If your application supports UIScene, call the method -sceneWillConnectToSessionWithOptions.
The app must call the method from its UISceneDelegate's method
-scene:willConnectToSession:options:, and must pass along the UIScene connection options as input
parameter to the AppConnect instance method -sceneWillConnectToSessionWithOptions:.
Example
@implementation MySceneDelegate
- (void)scene:(UIScene *)scene willConnectToSession:(UISceneSession *)session options:
(UISceneConnectionOptions *)connectionOptions {
[self.appConnect sceneWillConnectToSessionWithOptions:connectionOptions];
}
@end

8. Indicate in the user interface that the app is initializing if the app requires the AppConnect singleton’s
instance properties to determine what to do. For example, use an activity indicator (spinner). Remove
the indication after the app is notified that the AppConnect singleton is ready.
One reason this indication is important involves when to display sensitive data. Do not show any
sensitive data until the AppConnect singleton is ready, because until that time, the app cannot determine
whether it is authorized. Only an authorized app should show sensitive data.

Wait for the AppConnect singleton to be ready

The app cannot use the AppConnect singleton’s instance properties until the ready property on the AppConnect
singleton is set to YES. It is set to YES when the callback method -appConnectIsReady: in your
AppConnectDelegate protocol implementation is called. The app can now access the instance properties, such
as authState and pasteboardPolicy, on the AppConnect singleton.

Before accessing any instance properties, use the isReady getter to make sure the properties are accessible.

Wait for the AppConnect singleton to be ready

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 57

For example, in HelloAppConnect, the -appConnectIsReady: callback method calls -updateLabels:. The
-updateLabels: method calls various methods that access the instance properties on the AppConnect
singleton. Because other methods also call -updateLabels:, the method first checks the isReady property:

if ([self.appConnect isReady]) {

// Call methods that access instance properties.
}
else {

authInfoText = @"Ready: NO (AppConnect is not ready yet)";
policyInfoText = @"AppConnect is not ready yet";
configInfoText = @"AppConnect is not ready yet";

}

For details about the -appConnectIsReady: callback method and the ready property, see AppConnect ready
API details .

Optional: Specify app permissions and configuration in a plist file

If your app is an in-house app, you can specify default values for:

l the data loss prevention policies, such as the Open In policy
l the key-value pairs for your app-specific configuration

Specifically, you can provide a special plist file called AppConnect.plist as part of your in-house app that:

l specifies whether your app should be allowed by default to copy to the iOS pasteboard, use document
interaction (Open In and Open From), and print.

l specifies app-specific configuration keys and default values.

These default values are used by the MobileIron server to make it easier for the server administrator to set up
your app with the correct data loss prevention policies and app-specific configurations. Your app never reads the
AppConnect.plist.

When you include the AppConnect.plist in your app:

1. When an administrator uploads your in-house app to the MobileIron server, the server uses this plist file
to automatically create server policies that contain your specified data loss prevention policies and app-
specific configuration.

2. The administrator can then edit these policies.
For example:

l If one of your app-specific configuration keys requires a URL of an enterprise server, the
administrator provides that value.

l If the administrator requires stricter data loss prevention policies than your app’s default values, the
administrator changes the values.

3. The administrator then applies these policies to the appropriate set of devices.

Optional: Specify app permissions and configuration in a plist file

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 58

4. When your app runs, it receives the data loss prevention policies and app-specific configuration by using
the AppConnect for iOS APIs, described in AppConnect for iOS API.
For example, to handle app-specific configurations, you use the config property (an NSDictionary

object) and the callback method -appConnect:configChangedTo:

5. If the administrator later changes the data loss prevention policies or app-specific configuration, your
app receives the updates by using the AppConnect for iOS APIs.

An example of an AppConnect.plist file as viewed in Xcode looks like the following:

To set up an AppConnect.plist file:

1. Create a plist file called AppConnect.plist.

2. Place it in the root directory of your app.

3. In the Root key of AppConnect.plist, place a key called bundleid with the type String, and set the value to
the bundle ID of your app.

4. In the Root key of AppConnect.plist, create two keys called policy and config, each with the type
Dictionary.

5. In the policy dictionary, create keys called openin, openinwhitelist, openfrom,
openfromwhitelist,pasteboard, and print, each with the type String.

6. Set these keys’ values as given in the following table:

Optional: Specify app permissions and configuration in a plist file

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 59

Key Possible values and meanings

openin • allow
Document interaction is allowed with all other apps.

• disable
Document interaction is not allowed.

• whitelist
Only documents in the openinwhitelist list can open documents
from your app.

• appconnect
Document interaction is allowed with all other AppConnect apps.

This value results in the app receiving a whitelist in the Open In policy
API. The whitelist contains the list of all currently authorized
AppConnect apps. You do not enter an openinwhitelist key in the
plist. See The openInPolicy and openInWhitelist properties on
page 96.

openinwhitelist Semi-colon separated list of the bundle IDs of the apps with which
document interaction is allowed. This key is necessary when the
openin key has the value whitelist.

pasteboard • allow
Pasteboard interaction is allowed with all other apps. That is, this
option allows the device user to be able to copy content from your
app to the iOS pasteboard. Then, any app can copy from the
content from the pasteboard.

• disable
Pasteboard interaction is not allowed.

• appconnect
Pasteboard interaction is allowed only with other AppConnect
apps. That is, this option allows the device user to be able to copy
content from your app to the iOS pasteboard. Then, only other
AppConnect apps can copy the content from the pasteboard.

print • allow
Printing is allowed.

• disable
Printing is not allowed.

TABLE 8. APPCONNECT.PLIST KEYS AND VALUES

7. In the config dictionary, create keys as required for your app.

8. Optionally, add values for the keys. The values must be String types.

NOTE: The value $USERID$ in theexample tellsCore to substitute thedeviceuser’s user ID for the
value.Other possible variables are $EMAIL$and $PASSWORD$. Dependingon theCore
configuration, customvariables called $USER_CUSTOM1$ through $USER_CUSTOM4$ are
sometimesavailable.

Optional: Specify app permissions and configuration in a plist file

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 60

Using your own UIApplication subclass

If your app uses its own subclass of UIApplication, do the following:

1. Derive your subclass from AppConnectUIApplication instead of UIApplication.
You will need the following import statement:
#import "AppConnect/AppConnectUIApplication.h"

2. Change the third argument of the call to UIApplicationMain() to the name of your subclass of
AppConnectUIApplication.
The third argument, the principalClassName argument, is the UIApplication subclass for the app.

3. When you override an UIApplication method in your subclass, always invoke the method implementation
of the superclass AppConnectUIApplication at the end of your method.
For example:
[super sendEvent:event]

If you do not invoke the superclass implementation, AppConnect features will not work in your app.

Using the AppConnect framework in a Swift app
l First time use of SDK in your Swift app
l Tasks for upgrading the SDK in your Swift app

First time use of SDK in your Swift app

The following procedure describes what to do to add the AppConnect framework to a Swift app.

NOTE: Whenyouadd theAppConnect framework into your Xcodeproject, the Swift interfaces
corresponding toall theObjective-CAPIs areautomatically generatedbyXcode.

Before you begin

Do the tasks in Before you begin adding the AppConnect SDK to your app.

Procedure

1. Do the following steps from the Getting started task list:

a. Add AppConnect files and settings to your Xcode project.

b. Add your own libcrypto.a, libProtocolBuffers.a, and libssl.a libraries if needed.

c. Register as a handler of the AppConnect URL scheme.

d. Declare the AppConnect URL schemes as allowed.

e. Add AppConnect-related entries to your Info.plist.

f. Optional: Specify app permissions and configuration in a plist file

Using your own UIApplication subclass

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 61

2. Add a file named main.swift to your Xcode project, if you don’t already have one.

3. In main.swift, add the following code:

import Foundation
import AppConnect

UIApplicationMain(
CommandLine.argc,
UnsafeMutableRawPointer(CommandLine.unsafeArgv)

.bindMemory(
to: UnsafeMutablePointer<Int8>.self,
capacity: Int(CommandLine.argc)),

ACUIApplicationClassName,
NSStringFromClass(YourAppDelegate.self)

)

4. Add a bridging header file, if you don’t already have one, to your Xcode project. Name the file:
<app name>-Bridging-Header.h
Example:
HelloSwiftAppConnect-Bridging-Header.h

5. In the bridging header file, import AppConnect.h:
#import <AppConnect/AppConnect.h>

6. Go to your Xcode project's Build Settings for the Swift app target. Under Swift Compiler - General, set
Objective-C Bridging Header to the bridging header file, including the path.

7. Create a class that implements the AppConnectDelegate protocol. Usually this class is also the
AppDelegate for your app.

8. Initialize the AppConnect class with your AppConnectDelegate, save the singleton instance of the
AppConnect library, and initialize the AppConnect library. Then wait for the initialization to complete.
The following code is an excerpt from HelloSwiftAppConnect in the file HSAppDelegate.swift:

import UIKit
import AppConnect

class HSAppDelegate: UIResponder, UIApplicationDelegate, AppConnectHandler {

var appConnect: AppConnect?

func application(_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey : Any]? = nil) -> Bool {

AppConnect.log(at: .status, message: "HelloAppConnect started")
self.startAppConnect(launchOptions: launchOptions)

return true
}

func startAppConnect(launchOptions: [AnyHashable : Any]? = [:]) {

First time use of SDK in your Swift app

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 62

AppConnect.initWith(self)
self.appConnect = AppConnect.sharedInstance()
self.appConnect!.start(launchOptions: launchOptions)

// Wait for appConnectIsReady() before using any of the AppConnect
// singleton’s instance properties. The app can use AppConnect class properties
// and methods of the AppConnect singleton object.
// If your app uses AppTunnel with HTTP/S tunneling, be sure to register any
// NSURLProtocol subclasses AFTER initializing the AppConnect library.

// Indicate in the user interface that the app is initializing if the app requires
// the AppConnect singleton’s instance properties to determine what to do. For example,
// use an activity indicator (spinner). Remove the indication after the app is notified
// that the AppConnect singleton is ready.
// One reason this indication is important involves when to display sensitive data. Do
// not show any sensitive data until the AppConnect singleton is ready, because until
// that time, the app cannot determine whether it is authorized. Only an authorized app
//should show sensitive data.

}

func appConnectIsReady(_ appConnect: AppConnect) {
// The app can now use the AppConnect singleton’s instance properties.

self.updateLabels()
}

}

If your application supports UIScene, call the method sceneWillConnectToSession(with:).

The app must call the method from its UISceneDelegate's method scene(_:willConnectTo:options:), and must
pass along the UIScene connection options as input parameter to the AppConnect instance method
sceneWillConnectToSession(with:).

Example:

class MySceneDelegate: UIResponder, UIWindowSceneDelegate {
func scene(_ scene: UIScene, willConnectTo session: UISceneSession, options connectionOptions:

UIScene.ConnectionOptions){
AppConnect.sharedInstance()?.sceneWillConnectToSession(with: connectionOptions)

}
}

Tasks for upgrading the SDK in your Swift app

If you are upgrading your Swift app from a previous version of the AppConnect for iOS SDK:

l Replace the AppConnect.framework bundle in the project folder with AppConnect.xcframework.
l If you are using the AppConnectExtension.framework, replace the AppConnectExtension.framework
bundle in the project folder with the AppConnectExtension.xcframework bundle.

Tasks for upgrading the SDK in your Swift app

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 63

Troubleshooting
l AppConnect(ACURLSessionDataDelegateProxy.o)' does not contain bitcode.

l Lexical or preprocessor issue when building your app

l App crashes in call to -startWithLaunchOptions:

l Application error: Unable to communicate with the application

l App crashes due to uncaught ACPropertyAccessException

AppConnect(ACURLSessionDataDelegateProxy.o)' does not contain bitcode.
Problem:

Bitcode is enabled in build options, but should be disabled.

When you build your project, the following error occurs:
AppConnect(ACURLSessionDataDelegateProxy.o)' does not contain bitcode. You must rebuild it with
bitcode enabled (Xcode setting ENABLE_BITCODE), obtain an updated library from the vendor, or
disable bitcode for this target. for architecture arm64

Solution:

Disable Bitcode in the project’s Build Options, for example:

Lexical or preprocessor issue when building your app
Problem:

Path missing in #import statement

When you build your project, the following compiler error occurs:
Lexical or Preprocessor Issue:
'AppConnect.h' file not found

Troubleshooting

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 64

Solution:

Be sure your #import statements include the path to AppConnect.h and other header files included in
AppConnect framework. For example:

#import "AppConnect/AppConnect.h"

App crashes in call to -startWithLaunchOptions:
Problem:

Your app crashes immediately on launch, in the call to the AppConnect singleton’s method
-startWithLaunchOptions:.

When this error occurs, the AppConnect library:

l logs an error.
@"AppConnect error: AppConnect is unable to start because [UIApplication
sharedApplication] is not an instance AppConnectUIApplication."

l throws an NSException object. The object’s namemethod returns the string "AppConnect unable to

start". The object’s reasonmethod returns the string "[UIApplication sharedApplication] is not an
instance of AppConnectUIApplication."

Solution:

The call in main.m to the function UIApplicationMain is incorrect. Follow the instructions in Use AppConnect’s
UIApplication subclass.

Application error: Unable to communicate with the application
Problem:

The MobileIron client app displays this error message:
Application error: Unable to communicate with the application. Please contact the application
developer. The application’s bundle ID is <your application’s bundle ID>.

Solution:

This error occurs when the AppConnect library tries to contact the MobileIron client app, but you did not register
the app as a handler for the AppConnect URL scheme.

See Register as a handler of the AppConnect URL scheme on page 53.

App crashes due to uncaught ACPropertyAccessException

Problem:

Your app crashes due to the following uncaught exception:

Appcrashes in call to -startWithLaunchOptions:

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 65

<Error>: *** Terminating app due to uncaught exception 'ACPropertyAccessException', reason:
'Method -[AppConnect_impl <method name>] called before recovering the first unlock key’

The AppConnect library throws this exception if the app accesses the instance properties on the AppConnect
singleton before the AppConnect singleton is ready.

Solution:

Refactor your code to make sure you check the AppConnect singleton getter isReady before accessing any
instance properties. If isReady is YES, you can access the instance properties. If isReady is NO, wait for the
AppConnect library to call the callback method -appConnectIsReady: before accessing the properties.

See AppConnect ready API details on page 84.

Appcrashes due to uncaught ACPropertyAccessException

4

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 66

Developing third-party dual-mode apps

l What is a dual-mode app?
l Dual-mode sample app
l Dual-mode app states
l Data encryption states
l High-level dual-mode app behavior
l Dual-mode API details

What is a dual-mode app?
If your AppConnect app is distributed from the Apple App Store, due to Apple App Store requirements, your app
is required to work as either:

l an AppConnect app for enterprise users

l a regular app for general consumers

Such an app is called a dual-mode app. Using one code base and APIs in the AppConnect for iOS SDK, the app
automatically decides when it launches which mode to behave in:

l As an AppConnect app
The app supports the AppConnect features, such as authorization, data loss prevention, and secure file
I/O. MobileIron, through the MobileIron server, the MobileIron client app, and the AppConnect library,
provides AppConnect management.

l As a regular app
The app supports none of the AppConnect features. Furthermore, depending on the app, the
functionality available as a regular app can differ significantly from the functionality available as an
AppConnect app. For example, as a regular app, the app does not allow the user to access any sensitive
enterprise data.
A typical reason that an app runs as a regular app is that AppConnect is not configured for the device on
the MobileIron server. An app also runs as a regular app if the MobileIron client app has not yet been
installed on the device.

AppConnect apps distributed from the Apple App Store must be dual-mode apps. If you are a third-party app
developer, you typically build apps for Apple App Store distribution. If you are an in-house app developer, your
apps are typically distributed from the MobileIron server.

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 67

IMPORTANT: If your app is notdistributed from theAppleAppStoreandworks onlyasanAppConnect
app, ignore thedual-modecapability andassociatedAPIs.

Dual-mode sample app
A sample app that shows proper dual-mode app behavior is included with the AppConnect for iOS SDK zip file.
The app illustrates how and when to use the AppConnect for iOS APIs related to dual-mode behavior. It also
illustrates using AppConnect capabilities and secure data only when behaving as an AppConnect app.

The app is a simple note-taking app that allows the user to create a set of notes. The app uses the model-view-
controller design pattern. The model classes are Notes and Policies. The view controllers are
NotesViewController, NoteDetailViewController, SettingsViewController and AuthMessageViewController. The
class DualModeAppDelegate is the main app controller.

The following table summarizes the files:

File Description

DualModeAppDelegate.h/m UIApplicationDelegate for the app

Notes.h/m • Handles application logic for adding and retrieving notes.
• Uses secure file I/O when required.

Policies.h/m • Implements AppConnectDelegate
• Handles the dual-mode state transitions.
• Keeps track of whether to use secure file

I/O and handle DLP policies.

NotesViewController.h/m Provides user interface for showing the list of notes.

NotesDetailViewController.h/m Provides user interface for showing the contents of an individual
note.

SettingsViewController.h/m Provides user interface for changing between AppConnect app
behavior and regular app behavior.

AuthMessageViewController.h/m Provides user interface for displaying authorization status
messages.

NOTE: Displaying theauthorization status is onlyapplicable
whenbehavingasanAppConnectapp.

TABLE 9. DUAL-MODE SAMPLE APP FILES

Dual-mode sample app

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 68

Dual-mode app states
An app must maintain a dual-mode state that indicates whether it is behaving as an AppConnect app or a regular
app. It stores this state persistently, so that when it next launches, it knows how to behave. The possible states
are:

l Undecided
The app has initialized for the first time and has not yet decided whether to run in AppConnect Mode or
Non-AppConnect Mode.

l AppConnect Mode
The app is running as an AppConnect app. It supports the AppConnect features, such as authorization,
data loss prevention, and secure file I/O.
In AppConnect Mode, the app can change state only to Non-AppConnect Mode, and only if the app
user requests the change using a user interface provided by the app.

l Non-AppConnect Mode
The app is running as a regular app.
In Non-AppConnect Mode, the app can change state only to AppConnect Mode, and only if the app
user requests the change using a user interface provided by the app.

l Pending AppConnect Mode
The app changes to this state if the device user explicitly requests a change from Non-AppConnect
Mode to AppConnect Mode using the app’s user interface. For example, device users in an enterprise
sometimes have installed and used an app before the enterprise requires it as an AppConnect app. In
this state, the app is waiting for a notification from the AppConnect library to find out whether MobileIron
AppConnect components are managing the app.

l AppConnect Not Available

l AppConnect is not yet available on the device because the MobileIron client app is not yet installed on
the device. The app runs as a regular app. If the MobileIron client app is later installed, on subsequent
launches the app will decide whether to run in AppConnect Mode or Non-AppConnect Mode.
It is important for an app to delay its decision to run in AppConnect Mode or Non-AppConnect Mode
until after the MobileIron client app is installed. The reason is that users often launch the app before
installing the MobileIron client app. If the app decides on Non-AppConnect Mode, it can not leave that
state without user actions, such as using an app-provided user interface, or re-installing the app. The
AppConnect Not Available state allows apps to automatically change to AppConnect Mode when re-
launched after the MobileIron client app is installed.

The following diagram summarizes the state transitions that a dual-mode app implements. See High-level dual-
mode app behavior for more information about these state transitions.

Dual-modeapp states

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 69

FIGURE 2. DUAL-MODE APP STATE TRANSITIONS

Data encryption states
A dual-mode app encrypts its data only if all of the following are true:

l The app is in AppConnect Mode.

l Secure services are available.

Secure services are available only when the app’s authorization status is authorized.

l The secure file I/O policy requires secure file I/O.

Therefore, the app maintains a data encryption state. It stores this state persistently, so that when it next
launches, it knows how to behave. The possible states are:

l Unencrypted
The app does not encrypt its data.

l Encrypted
The app encrypts its data.

Data encryption states

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 70

The following diagram summarizes the state transitions that a dual-mode app implements. See High-level dual-
mode app behavior for information about these state transitions.

The state change to Encrypted state depends on three conditions: that the app is managed, that secure
services are available, and that the secure file I/O policy requires secure file I/O. Because the order of these
notifications can vary, upon receiving any of the notifications, the app checks if all three conditions are true yet.

For an example of checking whether to change to the Encrypted state, see the
DualMode sample app’s method -checkEncryptionState: in Policies.m.

Actions when changing to the Encrypted state

When changing to the Encrypted state, the app starts using secure file I/O APIs for new sensitive data. Also, the
app determines what to do with existing unencrypted data.

Consider these options for existing data:

l Secure existing sensitive data.
Your app can use the secure file I/O APIs to encrypt existing sensitive data. The dual-mode sample app
provides an example of this behavior.
MobileIron recommends this option for sensitive data. If device users upgrade from a previous version of
your app to a new dual-mode version, this option ensures that they do not lose data.

However, some data can remain unsecured. For example, user display preferences are typically
not sensitive information.

l Remove existing data.
Your app can remove existing data if doing so does not cause disruption to the app users.

Actions when changing to the Unencrypted state

When changing to the Unencrypted state, the app removes all sensitive data.

Actions when changing to the Encrypted state

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 71

High-level dual-mode app behavior

When the app launches for the first time

When a dual-mode app launches for the first time, it does not know whether it is managed by MobileIron. It does
the following high-level steps:

1. Sets its initial dual-mode state to Undecided.

2. Sets its initial encryption state to Unencrypted.

3. Checks whether AppConnect is available.

l If AppConnect is not available, the app changes its dual-mode state to AppConnect Not Available,
and continues as a regular app.

l If AppConnect is available, the app starts the AppConnect library.

4. Waits for a notification from the AppConnect library indicating whether MobileIron is managing the app.

5. Changes its dual-mode state to AppConnect Mode or Non-AppConnect Mode according to the
notification.

l When changing to Non-AppConnect Mode, the app notifies the AppConnect library that it is
retiring. Normally, the MobileIron server decides when to retire an app. In this case, the app is
retiring itself. Then the app stops the AppConnect library. It behaves as a regular app.

l When changing to AppConnect Mode, the app behaves as an AppConnect app. However, the app
changes its data encryption state to Encrypted only if secure apps are available and the secure file
I/O policy requires secure file I/O. The app uses the data encryption state to determine whether it
can use secure file I/O APIs.

6. Stores both the dual-mode state and data encryption state persistently for the next time it launches.

NOTE: Formoredetails, including specificAPI calls for these steps, seeAPI call sequencewhen theapp
launches.

When an app subsequently launches

On subsequent launches, the app does the following high-level steps:

1. Gets the dual-mode state and data encryption state that it stored.

2. Checks the dual-mode state, and takes the following actions depending on the state.

a. AppConnect Mode: Starts the AppConnect library.
The app continues as an AppConnect app. It uses the data encryption state to determine whether it
can use secure file I/O APIs.

b. Non-AppConnect Mode: Continues as a regular app.
The app does not start the AppConnect library.

High-level dual-mode appbehavior

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 72

c. AppConnect Not Available: Checks whether AppConnect is available.

l If AppConnect is not available, the app stays in AppConnect Not Available, and continues as
a regular app.

l If AppConnect is available, the app starts the AppConnect library, and waits for a notification
indicating whether MobileIron is managing the app.

3. After receiving the notification, changes its dual-mode state to AppConnect Mode or Non-AppConnect
Mode according to the notification.

l When changing to Non-AppConnect Mode, the app notifies the AppConnect library that it is
retiring. Normally, the MobileIron server decides when to retire an app. In this case, the app is
retiring itself. Then the app stops the AppConnect library. It behaves as a regular app.

l When changing to AppConnect Mode, the app behaves as an AppConnect app. However, the app
changes its data encryption state to Encrypted only if secure apps are available and the secure file
I/O policy requires secure file I/O. The app uses the data encryption state to determine whether it
can use secure file I/O APIs.

4. Stores both the dual-mode state and data encryption state persistently for the next time it launches.

NOTE: Formoredetails, including specificAPI calls for these steps, seeAPI call sequencewhen theapp
launches.

User requests to switch to Non-AppConnect Mode

A dual-mode app can provide a user interface that allows the device user to explicitly request that MobileIron no
longer manage the app. That is, the user requests a change to Non-AppConnect Mode. This user interface can
be useful if a device user leaves an enterprise, but still wants to use the app as a regular app.

Users are typically not aware of the term “AppConnect”. Therefore, the user interface should use other
terminology. The dual-mode sample app uses “Managed by MobileIron” in its user interface. Another possibility
is “Secure enterprise mode”.

When switching from AppConnect Mode to Non-AppConnect Mode, the app does the following high-level
steps:

1. Removes all its secure data, since regular apps do not have secure data.

2. Sets the data encryption state to Unencrypted, and stores it persistently for the next time it launches.

3. Notifies the AppConnect library that it is retiring.
Normally, the MobileIron server decides when to retire an app. In this case, the app is retiring itself.

4. Stops the AppConnect library.

5. Stores its dual-mode state, Non-AppConnect Mode, persistently for the next time it launches.

6. Continues running as a regular app.

User requests to switch to Non-AppConnectMode

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 73

For example, the app no longer enforces AppConnect policies or uses AppConnect features such as
secure file I/O.

NOTE: Formoredetails, including specificAPI calls for these steps, seeAPI call sequencewhenuser
requestsNon-AppConnectMode.

User requests to switch to AppConnect Mode

A dual-mode app can provide a user interface that allows the device user to explicitly request that MobileIron
manage the app. That is, the user requests a change to AppConnect Mode. For example, device users in an
enterprise sometimes have installed and used an app before the enterprise requires it as an AppConnect app.

Users are typically not aware of the term “AppConnect”. Therefore, the user interface should use other
terminology. The dual-mode sample app uses “Managed by MobileIron” in its user interface. Another possibility
is “Secure enterprise mode”.

When switching from Non-AppConnect Mode to AppConnect Mode, the app does the following high-level
steps:

1. Starts the AppConnect library.

2. Changes to the Pending AppConnect Mode state.

3. Waits for a notification from the AppConnect library indicating that MobileIron is managing the app.

4. If the app receives the notification that MobileIron is managing the app, the app changes state to
AppConnect Mode, and persistently stores the new state. It begins behaving as an AppConnect app.
For example, it enforces DLP policies.
If secure services are available and the secure file I/O policy requires secure file I/O, the app changes
the encryption state to Encrypted. The app decides what to do with existing data as described in Actions
when changing to the Encrypted state.

NOTE: Formoredetails, including specificAPI calls for these steps, seeAPI call sequencewhenuser
requestsAppConnectMode.

Data loss prevention policy handling

When a dual-mode app changes from Non-AppConnect Mode to AppConnect Mode, it handles the
AppConnect data loss prevention policies that it supports. For example, if the app supports the Open In policy,
based on the policy it receives from the AppConnect library, it enables or disables any Open In user interfaces.
When changing to Non-AppConnect Mode, the app stops handling the AppConnect DLP policies.

Dual-mode API details
The AppConnect for iOS API provides properties and methods that allow an app to behave as a dual-mode app.

User requests to switch to AppConnectMode

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 74

The ACManagedPolicy enumeration

The ACManagedPolicy enumeration provides the possible managed policy values for the app

typedef enum {
ACMANAGEDPOLICY_UNKNOWN = 0, // The AppConnect library has not yet determined

// whether the app is managed by MobileIron.
ACMANAGEDPOLICY_UNMANAGED = 1, // The application is not currently managed by

// MobileIron.
ACMANAGEDPOLICY_MANAGED = 2, // The application is currently managed by

// MobileIron.
} ACManagedPolicy;

The managedPolicy property

The read-only managedPolicy property on the AppConnect singleton contains an ACManagedPolicy value. The
value reflects the current status of the managed policy for the app. The managed policy indicates whether
MobileIron is managing the app.

The app can access the managedPolicy property only after:

l It has called the -startWithLaunchOptions: method on the AppConnect singleton.

l It has received the -appConnectIsReady: callback, that sets the ready property on the AppConnect
singleton to YES.

NOTE: Currently, apps havenoneed touse the managedPolicyproperty. Dual-modeappsdependon
notifications to instigatechanges to theapp’s dual-mode state.

After your app starts the AppConnect library, the AppConnect library determines the managed policy value, and
then:

1. updates the managedPolicy property.

2. calls the -appConnect:managedPolicyChangedTo:method to provide your app the current managed policy
value.

Dual mode methods

A dual-mode app uses the following methods:

l The +shouldStartAppConnect: class method

l The -appConnect:managedPolicyChangedTo: callback method

l The stop method

l The retire method

The ACManagedPolicy enumeration

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 75

The +shouldStartAppConnect: class method

+(BOOL)shouldStartAppConnect;

Dual mode apps call this method to determine whether to start the AppConnect library. The method returns YES
if:

l the MobileIron client app is installed or

l the MobileIron client app had been installed but is now deleted, and the app had previously run in
AppConnect Mode

This method is necessary because users often launch an app before the MobileIron client app is installed. When
an app launches the first time, the app determines whether it is managed by MobileIron, and therefore
determines whether to run as an AppConnect app (AppConnect Mode) or a regular app (Non-AppConnect
Mode). Once an app has chosen one of these modes, it cannot change to the other mode without user actions,
such as using an app-provided user interface, or re-installing the app. Therefore, an app should call
+shouldStartAppConnect: to determine whether to delay choosing between AppConnect Mode and Non-
AppConnect Mode until its next launch. If +shouldStartAppConnect: returns NO, the app delays the choice and
runs as a regular app. On the app's next launch, if +shouldStartAppConnect: returns YES, it makes the choice to
run as an AppConnect app without any user action.

The -appConnect:managedPolicyChangedTo: callback method

You optionally implement this method, which is in the AppConnectDelegate protocol:

-(void) appConnect:(AppConnect *)appConnect managedPolicyChangedTo:
(ACManagedPolicy)newManagedPolicy;

Implement this method only if your app is a dual-mode app.

When a change occurs to the managed policy, the AppConnect library:

1. Sets the managedPolicy property on the AppConnect object to the new ACManagedPolicy value.

2. Calls the appConnect:managedPolicyChangedTo:method, which provides the new ACManagedPolicy value
in its parameter.

In this method, the app changes its dual-mode state to AppConnect Mode or Non-AppConnect Mode.

The stop method
-(void)stop;

The -stopmethod on the AppConnect singleton object:

The +shouldStartAppConnect: classmethod

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 76

l shuts down the AppConnect library for the app.

l deallocates the AppConnect shared instance -- the sharedInstance static property on the AppConnect
class.

The app calls the -stopmethod when it changes state to Non-AppConnect Mode.

If at a later time, the user requests to change to AppConnect Mode, the app restarts the AppConnect library.

NOTE: Theappcancall the +logAtLevel:format:and +logAtLevel:format:args: classmethodsandget
the +(ACLogLevel)logLevel property evenafter calling -stop:.When theAppConnect library is
stopped, the log level is always ACLOGLEVEL_STATUS.

See API call sequence when user requests AppConnect Mode for examples of:

l when to call the -stopmethod

l restarting the AppConnect library

The retire method
-(void)retire;

The -retiremethod on the AppConnect singleton object informs the AppConnect library that the app is retiring.
Normally, the MobileIron server decides when to retire an app. In this case, the app is retiring itself.

Calling -retire causes the AppConnect library to:

l clean up information it keeps about the app, including secure data.

l set its managedPolicy status for the app to ACMANAGEDPOLICY_UNKNOWN.

IMPORTANT: Anappmust call -retire and then immediately call -stopwhen it is changing toNon-
AppConnect Mode.

For an example of when to call the -retiremethod, see API call sequence when user requests AppConnect
Mode.

API call sequence when the app launches

When a dual-mode app launches, it uses its dual-mode state and whether AppConnect is available to determine
how to proceed. It must determine whether it is managed by MobileIron, and therefore whether to behave as an
AppConnect app or a regular app.

NOTE: Dual-mode sampleappcode snippets illustrating this behavior are from:

l File: Policies.m

l Methods: -initPrivateWithLaunchOptions: and -appConnect:managedPolicyChangedTo:

The retiremethod

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 77

Specifically, when launching, the app does the following:

1. Gets its persisted dual-mode state and data encryption state. On the first launch, because no persisted
states exist, the app sets the dual-mode state to Undecided and the encryption state to Unencrypted.

2. Determines whether to start the AppConnect library.

// Do not start the AppConnect library when the dual-mode state is Non-AppConnect Mode.
// Otherwise, start it only if shouldStartAppConnect() says you should.
if (DMS_NonACMode != _state && [AppConnect shouldStartAppConnect]) {

[AppConnect initWithDelegate:self];
_ac = [AppConnect sharedInstance];
[_ac startWithLaunchOptions:launchOptions];

}
else if (DMS_Undecided == _state) {

// Change the state to AppConnect Not Available.
// Persistently store the state, and continue as a regular app

[self setState:DMS_ACNotAvailable];
}

3. If the AppConnect library was not started, continue as a regular, non-AppConnect app.
In this case, if the dual-mode state had been persisted prior to this launch, it was either Non-
AppConnect Mode, AppConnect Not Available, or Pending AppConnect Mode. If it had not been
persisted, the state changed from Undecided to AppConnect Not Available.

4. If the AppConnect library was started and the persisted dual-mode state was AppConnect Mode:

l Wait for the -appConnectIsReady: callback method before accessing any instance properties on the
AppConnect singleton.

l Continue as an AppConnect app. Regarding data encryption, if the data encryption state is
Encrypted, it can use secure file I/O.

5. If the AppConnect library was started and the dual-mode state is AppConnect Not Available,
Undecided, or Pending AppConnect Mode, wait for the AppConnect library to call the -
appConnect:managedPolicyChangedTo: callback method.
The state change depends on the value of the newManagedPolicy parameter in the callback method:

l If the value ACMANAGEDPOLICY_MANAGED, the app changes to AppConnect Mode, and persistently
stores the new dual-mode state.
The app begins behaving as an AppConnect app. For example, it handles DLP policies, and when
the data encryption state changes to Encrypted, it starts using secure file I/O

l If the value ACMANAGEDPOLICY_UNMANAGED, the app changes to Non-AppConnect Mode, and
persistently stores the new dual-mode state.
It calls -retire, and then stops the AppConnect library:

API call sequencewhen the app launches

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 78

[_ac retire];
[_ac stop]:
_ac = nil;

The app begins behaving as a regular, non-AppConnect app.

API call sequence when user requests Non-AppConnect Mode

If the device user, through the app’s user interface, requests to change to Non-AppConnect Mode, the app
makes the change.

NOTE: Dual-mode sampleappcode snippets illustrating this behavior are from:
File: Policies.m
Methods: -switchToNonACMode:

The app does the following:

1. Performs its usual retire actions, such as removing all its sensitive data, since regular apps do not have
sensitive data.

2. Sets the data encryption state to Unencrypted, since regular apps do not encrypt data. It persistently
saves the state.

3. Persistently saves its dual-mode state as Non-AppConnect Mode.

4. Calls the -retiremethod on the AppConnect singleton object, and then stops the AppConnect library.

[_ac retire];
[_ac stop]:
_ac = nil;

5. Continues as a regular, non-AppConnect app.

When the app next launches, it checks its dual-mode state. Because the state is Non-AppConnect Mode, the
app does not start the AppConnect library.

API call sequence when user requests AppConnect Mode

If the device user, through the app’s user interface, requests to change to AppConnect Mode, the app attempts
to make the change.

NOTE: Dual-mode sampleappcode snippets illustrating this behavior are from:
File: Policies.m
Methods: -attemptSwitchToACMode:and -appConnect:managedPolicyChangedTo:

The app does the following:

1. Changes to the Pending AppConnect Mode state, and persistently stores the state.

2. Starts the AppConnect library, using -startWithLaunchOptions:.

API call sequencewhen user requests Non-AppConnectMode

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 79

[AppConnect initWithDelegate:self];
_ac = [AppConnect sharedInstance];
[_ac startWithLaunchOptions:nil];

NOTE: When restarting theAppConnect library, theparameter passed to
-startWithLaunchOptions: is nil.

3. Waits for the AppConnect library to call -appConnect:managedPolicyChangedTo:.

When -appConnect:managedPolicyChangedTo: is called:

l If the newManagedPolicy parameter has the value ACMANAGEDPOLICY_UNMANAGED:

The app changes its dual-mode state back to Non-AppConnect Mode. The app persistently stores the
state.
The app calls -retire, and then stops the AppConnect library:

[_ac retire];
[_ac stop]:
_ac = nil;

The app notifies the user of the failure to change to AppConnect Mode. It continues behaving as a
regular, non-AppConnect app.

l If the newManagedPolicy parameter has the value ACMANAGEDPOLICY_MANAGED:

The app changes its dual-mode state to AppConnect Mode. The app persistently stores the state.
If secure services are available, and the secure file I/O policy is required, the app sets the data
encryption state to Encrypted. The app decides what to do with existing data. For example, the
DualMode sample app encrypts all its existing notes. As the app continues, it checks the data encryption
state to determine whether to use secure file I/O APIs.
Also, when changing to AppConnect Mode, the app checks if the authorization status is retired. If it is,
the app performs its usual retire actions, such as removing all its sensitive data.
Finally, the app notifies the user of the successful change to AppConnect Mode. It continues behaving
as an AppConnect app.

API call sequencewhen user requests AppConnectMode

5

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 80

AppConnect for iOS API

l The AppConnect interface
l AppConnect-related notifications
l Multithread support
l AppConnect ready API details
l Authorization API details
l App-specific configuration API details
l Pasteboard policy API details
l Drag and drop policy API details
l Open In policy API details
l Open From policy API details
l Print policy API details
l Log messages API details
l Secure services API details
l Version property
l Getting upload status for tunneled HTTP/S requests
l Caching tunneled URL responses
l AppConnectUIApplication class
l Encryption keys for custom cryptography
l Securing sensitive data such as encryption keys
l iOS active state change notifications due to AppConnect control switches
l Secure file I/O API details
l Sharing secure files from an extension
l AppTunnel diagnostic API details
l UIScene support

Related topics

l Developing third-party dual-mode apps

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 81

The AppConnect interface
The AppConnect interface provides your app’s primary interactions with the AppConnect library. The
AppConnect interface declares static methods that your app uses to initialize its use of the AppConnect library
and get the singleton instance of the AppConnect object. For details, see:
• Use AppConnect’s UIApplication subclass
• Initialize the AppConnect library.

The AppConnect interface also declares the properties and methods your app uses to interact with the
AppConnect library. However, the app cannot access the instance properties on the AppConnect singleton until
the AppConnect singleton has completed its initialization. For details about checking when the AppConnect
singleton is ready, see:
• Wait for the AppConnect singleton to be ready
• AppConnect ready API details

For details each of the AppConnect interface’s properties and methods, see:
• Authorization API details
• App-specific configuration API details
• Pasteboard policy API details
• Drag and drop policy API details
• Open In policy API details
• Print policy API details
• Log messages API details
• Secure services API details
• Version property
• Caching tunneled URL responses
• Encryption keys for custom cryptography
• iOS active state change notifications due to AppConnect control switches

NOTE: TheAppConnect interfacealsoprovidesmethods specifically for dual-modeapps. Thesemethods
aredescribed inDeveloping third-partydual-modeapps.

AppConnect-related notifications
Your app receives notifications about changes to:
• the ready status of the AppConnect singleton
• the user’s authorization status
• app-specific configuration
• data loss prevention policies
• secure services status
• the secure file I/O policy
• the log level
• app state changes due to AppConnect events

Upon receiving a notification, your app:

The AppConnect interface

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 82

1. Makes appropriate changes to its logic, display, and data.
2. In most cases, calls an API to inform the AppConnect library about its success or failure in making the

changes.

Notification methods in the AppConnectDelegate protocol

Your app receives notifications by implementing the AppConnectDelegate protocol.

Your app must implement the notification callback methods for:
• handling the change to the ready status of the AppConnect singleton:

-appConnectIsReady:

• handling authorization status changes:

-appConnect:authStateChangedTo:withMessage:

Your app optionally implements the notification callback methods for handling app-specific configuration
changes, data loss prevention policy changes, secure services changes, log level changes and changes to the
app state due to AppConnect events:

-appConnect:configChangedTo:

-appConnect:openInPolicyChangedTo:newWhitelist:

-appConnect:openInAttemptedWhenACOpenInPolicyBlocked:

-appConnect:openURLAttemptedWhenUnauthorizedForURL:

-appConnectAttemptedDragAndDropToNonAppConnectApp:

-appConnect:pasteboardPolicyChangedTo:

-appConnect:copyAttemptedWhenUnauthorized:

-appConnect:printPolicyChangedTo:

-appConnect:secureServicesAvailabilityChangedTo:

-appConnect:secureFileIOPolicyChangedTo:

-appConnect:logLevelChangedTo:

-applicationWillResignActiveForAppConnect:

-applicationDidBecomeActiveFromAppConnect:

You implement only the optional callback methods that your application needs. For example, if your application
does not copy content to the iOS pasteboard, do not implement -appConnect:pasteboardPolicyChangedTo:.

Notification acknowledgments

Your app must inform the AppConnect library of your app’s success or failure in applying changes it receives in
notifications. Depending on the type of notification, your app calls one of the following methods of the
AppConnect singleton object:

Notificationmethods in the AppConnectDelegate protocol

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 83

-authStateApplied:message:

-configApplied:message:

-openInPolicyApplied:message:

-pasteboardPolicyApplied:message:

-printPolicyApplied:message:

-secureFileIOPolicyApplied:message:

NOTE: Nonotificationacknowledgments exist for ready status notifications, log level notifications, or
notifications of app statechangesdue toAppConnect events.

Each method takes a parameter that is an ACPolicyState enumeration value:

typedef enum {
ACPOLICY_UNSUPPORTED = 0, // The policy is not supported by this application
ACPOLICY_APPLIED = 1, // The policy was applied successfully
ACPOLICY_ERROR = 2, // An error occurred applying the policy

} ACPolicyState;

Typically, you pass either ACPOLICY_APPLIED or ACPOLICY_ERROR. If you do not implement one of the optional
notification methods, the AppConnect library behaves as if your app had passed ACPOLICY_UNSUPPORTED.

Multithread support
Regarding multithread support:
• The AppConnect library is thread-safe. Your app can concurrently call all methods of the AppConnect

singleton object from multiple threads without deadlocking, crashing, corrupting data, or providing
unpredictable results. Also on concurrent calls, the methods will not block for a long time.

• Calls that the AppConnect library makes to AppConnectDelegate methods are dispatched to the delegate on
the main thread.

• Each secure file API has the same multithreading capabilities, if any, that the corresponding unsecured API
has. This correspondence is true for the Posix-style APIs, the methods of ACFileHandle, and the Objective-C
category methods that the AppConnect SDK provides. For example, if a POSIX function locks a file, the
corresponding secure function honors that file locking. Refer to the documentation of the corresponding
unsecured API for specifics. In general, however, use standard practices to serialize access to a file from
multiple threads.

Related topics
• The AppConnect interface
• AppConnect-related notifications
• Secure file I/O API details

Multithread support

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 84

AppConnect ready API details

The ready property

The AppConnect for iOS API provides a read-only property on the AppConnect singleton called ready:

@property (nonatomic, readonly, getter=isReady) BOOL ready;

This property and its getter method isReady indicate whether the AppConnect singleton is ready for the app to
access the singleton’s instance properties. The app can access the instance properties only if isReady is YES. If
isReady is NO, an attempt to access an instance property throws an exception. The thrown NSException object
has the name "ACPropertyAccessException".

When the app calls the AppConnect singleton’s method -startWithLaunchOptions:, the value of ready is NO.
When the AppConnect library calls the callback method
-appConnectIsReady:, the value changes to YES. The value remains YES for the life of the app.

Impacted instance properties

When isReady is NO, accessing the following instance properties throw an exception:

@property (nonatomic, readonly) ACManagedPolicy managedPolicy;

@property (nonatomic, readonly) ACAuthState authState;

@property (unsafe_unretained, nonatomic, readonly) NSString *authMessage;

@property (nonatomic, readonly) ACPasteboardPolicy pasteboardPolicy;

@property (nonatomic, readonly) ACOpenInPolicy openInPolicy;

@property (unsafe_unretained, nonatomic, readonly) NSSet *openInWhitelist;

@property (nonatomic, readonly) ACPrintPolicy printPolicy;

@property (nonatomic, readonly) ACSecureFileIOPolicy secureFileIOPolicy;

@property (unsafe_unretained, nonatomic, readonly) NSDictionary *config;

NOTE: Youcanaccess the instanceproperty secureServicesAvailability atany time.

The -appConnectIsReady: callback method

You are required to implement this method, which is in the AppConnectDelegate protocol:
-(void)appConnectIsReady:(AppConnect *)appConnect;

The AppConnect library calls this method when the value of the ready property has changed. The AppConnect
library calls this method one time after the app calls the AppConnect singleton’s method -

startWithLaunchOptions:. The value of ready is changed to YES, which means that the instance properties on
the AppConnect singleton are initialized and ready for the app to access.

AppConnect ready API details

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 85

In the -appConnectIsReady:method:
• Access the instance properties on the AppConnect singleton.
• Update the app with the current authorization status, data loss prevention policies, secure file I/O policy, and

configuration key-value pairs.
• Remove the user interface indication that informed the user that the app was initializing.

NOTE: Always update theapp’s policies andconfiguration status in the -appConnectIsReady:method,
which theAppConnect library calls every time theapp is launched. TheAppConnect library calls
other callbackmethods, suchas thecallbackmethods for authorization, data loss prevention
policies, andconfiguration,only if the status haschanged. Therefore, youcanalways expectall
thesecallbackmethodson the first launchof theapp.However, subsequent launchesoften result
in theAppConnect library callingonly the -appConnectIsReady:method.

Pseudocode for -isAppConnectReady:

The following pseudocode illustrates how to use the isReady getter and the
-isAppConnectReady: callback method. In this example:
• The same class implements the UIApplicationDelegate protocol and the AppConnectDelegate protocol.
• The class has an instance property called appConnect for saving the AppConnect singleton.

- (void)applicationDidBecomeActive:(UIApplication *)application
{

if ([self.appConnect isReady]) {
[self updateWithAppConnectPolicies];

}
else {

[self presentAppInitializingWithMessage:NSLocalizedString
(@"Authorizing. Please wait...", nil)];

}
}

-(void)appConnectIsReady:(AppConnect *)appConnect {
[self updateWithAppConnectPolicies];
[self dismissAppInitializing];

 }

-(void)updateAppConnectPolicies {

// Check isReady since this method can be called from methods besides
// -appConnectIsReady:

 if ([appConnect isReady]) {
 // Check the app’s authorization, policies, and configuration status
// and update the app appropriately.

 }
}

Pseudocode for -isAppConnectReady:

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 86

Authorization API details
The AppConnect for iOS API provides properties and methods that allow an app to handle the device user’s
authorization status for using the app. For an overview of this feature, see Authorization .

The ACAuthState enumeration

The ACAuthState enumeration provides the possible authorization statuses for the device user to use the
application:

typedef enum {
ACAUTHSTATE_UNAUTHORIZED = 0, // The user is not authorized to access sensitive

// data or views in this app.
ACAUTHSTATE_AUTHORIZED = 1, // This is the only state in which the user is

// authorized to access sensitive data or views.
ACAUTHSTATE_RETIRED = 2, // The app must erase all sensitive data,

// including any stored authentication
// credential.

} ACAuthState;

The authState and authMessage properties

The following read-only properties on the AppConnect singleton relate to authorization:

Property Description

authState An ACAuthState value that indicates the current authorization status of the device
user for using the app.

authMessage A string value that indicates the reason for the current authorization status.

TABLE 10. AUTHORIZATION PROPERTIES ON THEAPPCONNECT SINGLETON

When your app launches:
• Get the singleton AppConnect object and call its -startWithLaunchOptions: method.
• Wait for the -appConnectIsReady: callback method before accessing the authState and the authMessage

properties.
While waiting, indicate in the user interface that the app is initializing if the app requires the AppConnect
singleton’s instance properties to determine what to do. For example, use an activity indicator (spinner).
One reason this indication is important involves when to display sensitive data. Do not show any sensitive
data until the AppConnect singleton is ready, because until that time, the app cannot determine whether it is
authorized. Only an authorized app should show sensitive data.

After the -appConnectIsReady: callback method is called, check the value of the authState property. Do the
following:
• Remove the indication that the app is initializing.
• If the status is not ACAUTHSTATE_AUTHORIZED, do not allow the user to see or access sensitive data.
• If the status is not ACAUTHSTATE_AUTHORIZED, display the authMessage string.

Authorization API details

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 87

• If the status is ACAUTHSTATE_AUTHORIZED, allow the user to see and access sensitive data. Typically, the app
does not display the authMessage string when the status is ACAUTHSTATE_AUTHORIZED.

On any updates to authorization status while the app is running, the AppConnect library updates the properties,
and then calls the -appConnect:authStateChangedTo:withMessage: method.

Authorization methods

Your app uses the following methods to receive updates to the authorization status and report how the app
handled the updates.
• The -appConnect:authStateChangedTo:withMessage: callback method
• The -authStateApplied:message: acknowledgment method
• The -displayMessage: method

The -appConnect:authStateChangedTo:withMessage: callback method

You are required to implement this method, which is in the AppConnectDelegate protocol:

-(void) appConnect:(AppConnect *) appConnect
authStateChangedTo:(ACAuthState)newAuthState
withMessage:(NSString *)message;

When a change has occurred to the user’s authorization status, the AppConnect library:
1. Sets the authState property on the AppConnect object to the new ACAuthState value.
2. Sets the authMessage property on the AppConnect object to a string explaining the new authorization status.
3. Calls the -appConnect:authStateChangedTo:withMessage:method.

The method provides the following in its parameters:
• the new authorization status as a ACAuthState value
• an NSString, which is a message explaining the new authorization status

Your app then handles the new status as follows:

New status App actions

ACAUTHSTATE_UNAUTHORIZED • Exits any sensitive part of the application.
• Stops allowing the user to access sensitive data and views.
• Displays the message received in the callback method that explains the

authorization status change.
• Calls the -authStateApplied:message: method.

ACAUTHSTATE_AUTHORIZED • Allows the user to access sensitive data and views.
• Calls the -authStateApplied:message: method.

ACAUTHSTATE_RETIRED • Exits any sensitive part of the application.
• Deletes all sensitive data, including any stored authentication credentials,

data in files, keychain items, pasteboard data, and any other persistent

TABLE 11. AUTHORIZATION STATUS HANDLING

Authorizationmethods

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 88

New status App actions

storage.
• Displays the message received in the callback method that explains the

authorization status change.
• Calls the -authStateApplied:message: method.

TABLE 11. AUTHORIZATION STATUS HANDLING (CONT.)

NOTE: TheAppConnect library cancall thecallbackmethodwhenonly theexplanatory string, but not
theauthorization status, has changed.When the status is ACAUTHSTATE_UNAUTHORIZED or
ACAUTHSTATE_RETIRED, themessage typically contains anew reason for the status. Display thenew
message.

The -authStateApplied:message: acknowledgment method

After your app processes the information provided in the callback method, it must call this acknowledgment
method on the AppConnect singleton:

-(void)authStateApplied:(ACPolicyState)policyState message:(NSString *)message;

Your app passes the following parameters to this method:
• the ACPolicyState value that represents the success or failure of handling the new authorization status.

Pass the value ACPOLICY_APPLIED if the app successfully handled the new status. Otherwise, pass the value
ACPOLICY_ERROR. Passing the value ACPOLICY_UNSUPPORTED is not allowed, because every app must handle
authorization status changes.

• an NSString explaining the ACPolicyState value.
Typically, you use this string to report the reason the app failed to apply the new authorization status. The
string is reported in the MobileIron server log files.

The -displayMessage: method

The following method on the AppConnect singleton causes the MobileIron client app to display the current
authorization status message:

-(void)displayMessage:(NSString *)message withCompletion:(void(^)(BOOL success))completion;

In most cases, your production app does not use this method. Your production app is responsible for displaying
the message that it receives in the notification method for an authorization status change. Your app controls
exactly when and how to display the string.

However, you can temporarily use this method when your app is under development. For example, when the
status changes to ACAUTHSTATE_UNAUTHORIZED, your app must exit all sensitive views. This requirement can make
displaying the message difficult, depending on the application. In this case, use the -displayMessage: method
until you are able to fully develop your app.

The -authStateApplied:message: acknowledgmentmethod

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 89

App-specific configuration API details
The AppConnect for iOS API provides properties and methods that allow an app to receive app-specific
configuration from the MobileIron server. For an overview of this feature, see Configuration specific to the app.

The config property

The read-only config property on the AppConnect singleton is an NSDictionary object. It contains the current
key-value pairs for the app-specific configuration.

Whenever changes to the key-value pairs occur, the AppConnect library:
1. updates the config property
2. calls the -appConnect:configChangedTo: method to provide your app the current configuration.

When your app launches:
• Get the singleton AppConnect object and call its

-startWithLaunchOptions: method.
• Wait for the -appConnectIsReady: callback method before accessing the config property.
• After the -appConnectIsReady: callback method is called, check the value of the config property. It contains

the key-value pairs, if any, that are configured on the MobileIron server for the app. If no key-value pairs are
configured, the config property is an NSDictionary object with no entries.

• Apply the configuration according to your application’s requirements and logic.

App-specific configuration methods

Your app uses the following methods to receive app-specific configuration updates and report how the app
handled the updates.

The -appConnect:configChangedTo: callback method

You optionally implement this method, which is in the AppConnectDelegate protocol:

-(void) appConnect:(AppConnect *)appConnect configChangedTo:(NSDictionary *)newConfig;

Implement this method only if your app uses app-specific configuration key-value pairs that the MobileIron server
administrator configures on the server Admin Portal.

When a change has occurred to the app-specific configuration on the MobileIron server, the AppConnect library:
1. Sets the config property on the AppConnect object to the new NSDictionary value.
2. Calls the -appConnect:configChangedTo:method, which provides the new NSDictionary value in its

parameter.

Your app then:
• applies the new configuration according to your application’s requirements and logic.
• calls the -configApplied:message:method.

App-specific configuration API details

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 90

The -configApplied:message: acknowledgment method

After your app processes the information provided in the callback method, it must call this acknowledgment
method on the AppConnect singleton:

-(void)configApplied:(ACPolicyState)policyState message:(NSString *)message;

Your app passes the following parameters to this method:
• the ACPolicyState value that represents the success or failure of handling the app-specific configuration

updates.
Pass the value ACPOLICY_APPLIED if the app successfully handled the updates. Otherwise, pass the value
ACPOLICY_ERROR. Pass the value ACPOLICY_UNSUPPORTED if your app does not support app-specific
configuration. If you do not implement the -configApplied:messagemethod, the AppConnect singleton
behaves as if you passed it ACPOLICY_UNSUPPORTED.

• an NSString explaining the ACPolicyState value.
Typically, you use this string to report the reason the app failed to apply the app-specific configuration
updates. The string is reported in the MobileIron server log files.

Pasteboard policy API details
The AppConnect for iOS API provides properties and methods that allow an app to handle its pasteboard policy
as determined by the MobileIron server. For an overview of this feature, see Data loss prevention policies.

This policy determines whether your app is allowed to copy content to the pasteboard. This policy does not
impact whether your app is allowed to paste content from the pasteboard into your app.

The ACPasteboardPolicy enumeration

The ACPasteboardPolicy enumeration provides the possible pasteboard statuses for the app:

typedef enum {
ACPASTEBOARDPOLICY_UNAUTHORIZED = 0, // The application cannot write data

// to the pasteboard.
// The AppConnect library enforces this status
// and ensures that the app cannot modify the
// pasteboard contents.

ACPASTEBOARDPOLICY_AUTHORIZED = 1, // The application may write data to the pasteboard
// which gets shared among all apps.
// (Both AppConnect and non-AppConnect apps
// can read this data).

ACPASTEBOARDPOLICY_SECURECOPY = 2 // The application may write data to the general
// pasteboard which is shared with authorized
// AppConnect apps.
// The AppConnect library implements the underlying
// technology so that the data written to the
// general pasteboard by one AppConnect app is only

The -configApplied:message: acknowledgmentmethod

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 91

// readable by authorized AppConnect apps.
} ACPasteboardPolicy;

Handle the pasteboard policy status as follows:
• Both ACPASTEBOARDPOLICY_AUTHORIZED and ACPASTEBOARDPOLICY_SECURECOPY indicate that copying content

to the pasteboard is allowed. The AppConnect library handles making sure all apps or only AppConnect apps
can paste the data. When the value is ACPASTEBOARDPOLICY_SECURECOPY, the AppConnect library encrypts
the data copied to the pasteboard, and decrypts the data when it is pasted to another AppConnect app.

• The status ACPASTEBOARDPOLICY_UNAUTHORIZED indicates that writing data to the pasteboard is not allowed.
The AppConnect library enforces the status ACPASTEBOARDPOLICY_UNAUTHORIZED. Therefore, with this status,
even if you use an API to write to the pasteboard, the data is not written.
Exceptions to this rule exist. For some iOS APIs, such as QLPreviewController, it is not possible to prevent
data from being written to the pasteboard. If your app uses such APIs, when the status is
ACPASTEBOARDPOLICY_UNAUTHORIZED, change your app’s behavior so that it does not use that API. However,
for some apps, changing the behavior is not possible, due to, for example, an unacceptable degradation in
the app’s capabilities. In that case, your app should indicate that it does not support the pasteboard policy, as
described in The -pasteboardPolicyApplied:message: acknowledgment method.

Although the AppConnect library does not allow writing data to the pasteboard, your app should disable special
user interfaces, if any, that it uses for copying content to the pasteboard. By disabling such user interfaces, your
app does not give the end user the impression that copying is possible when the AppConnect library has
disabled it.

Impact on the pasteboard policy of secure services availability

The pasteboard policy ACPASTEBOARDPOLICY_SECURECOPY depends on secure services being available. If secure
services are not available and the pasteboard policy is ACPASTEBOARDPOLICY_SECURECOPY:
• Writing content to the pasteboard (copying) fails. No data is written.
• Reading content from the pasteboard (pasting) reads unsecured content, if any.

The pasteboardPolicy property

The read-only pasteboardPolicy property on the AppConnect singleton contains an ACPasteboardPolicy value.
The value reflects the current status of the pasteboard policy for the app.

The AppConnect library enables or disables the app’s ability to copy content to the pasteboard depending on the
pasteboardPolicy value:
• Copying is enabled for ACPASTEBOARDPOLICY_AUTHORIZED.
• Copying is disabled for ACPASTEBOARDPOLICY_UNAUTHORIZED.
• Copying is enabled for ACPASTEBOARDPOLICY_SECURECOPY if the secureServicesAvailability property has

the value ACSECURESERVICESAVAILABILITY_AVAILABLE.
• Copying is disabled for ACPASTEBOARDPOLICY_SECURECOPY if the secureServicesAvailability property has

the value ACSECURESERVICESAVAILABILITY_UNAVAILABLE.

When your app launches:
1. Get the singleton AppConnect object and call its

-startWithLaunchOptions: method.

Impact on the pasteboard policy of secure services availability

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 92

2. Wait for the -appConnectIsReady: callback method before accessing the pasteboardPolicy property.
3. After the -appConnectIsReady: callback method is called, depending on the pasteboardPolicy value, disable

or enable special user interfaces, if any, that the app uses for copying content to the pasteboard. Although
the AppConnect library enables or disables writing data to the pasteboard, your app should not give the end
user the impression that copying is possible when the AppConnect library has disabled it.

Whenever the policy changes, the AppConnect library:
1. updates the pasteboardPolicy property.
2. calls the -appConnect:pasteboardPolicyChangedTo: method to provide your app the current pasteboard

policy.

Pasteboard policy methods

Your app uses the following methods to receive pasteboard policy updates and to report how the app handled
the updates.
• The -appConnect:pasteboardPolicyChangedTo: callback method
• The -pasteboardPolicyApplied:message: acknowledgment method
• The -appConnect:copyAttemptedWhenUnauthorized: callback method

The -appConnect:pasteboardPolicyChangedTo: callback method

You optionally implement this method, which is in the AppConnectDelegate protocol:

-(void) appConnect:(AppConnect *)appConnect pasteboardPolicyChangedTo:
(ACPasteboardPolicy)newPasteboardPolicy;

Implement this method only if your app copies content to the pasteboard. This policy does not impact whether
your app is allowed to paste content from the pasteboard into your app.

When a change has occurred to the pasteboard policy on the MobileIron server, the AppConnect library:
1. Sets the pasteboardPolicy property on the AppConnect object to the new ACPasteboardPolicy value.
2. Disables or enables copying to the pasteboard as follows:

- Enables copying for ACPASTEBOARDPOLICY_AUTHORIZED.
- Disables copying for ACPASTEBOARDPOLICY_UNAUTHORIZED.
- Enables copying for ACPASTEBOARDPOLICY_SECURECOPY if the secureServicesAvailability property has

the value ACSECURESERVICESAVAILABILITY_AVAILABLE.
- Disables copying for ACPASTEBOARDPOLICY_SECURECOPY if the secureServicesAvailability property has

the value ACSECURESERVICESAVAILABILITY_UNAVAILABLE.
3. Calls the appConnect:pasteboardPolicyChangedTo:method, which provides the new ACPasteboardPolicy

value in its parameter.

Your app then:
• Disables or enables special user interfaces, if any, that the app uses for copying content to the pasteboard.

Although the AppConnect library enables or disables writing data to the pasteboard, your app should not give
the end user the impression that copying is possible when the AppConnect library has disabled it.

• calls the -pasteboardPolicyApplied:message:method.

Pasteboard policymethods

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 93

The -pasteboardPolicyApplied:message: acknowledgment method

After your app processes the information provided in the callback method, it must call this acknowledgment
method on the AppConnect singleton:

-(void)pasteboardPolicyApplied:(ACPolicyState)policyState message:(NSString *)message;

Your app passes the following parameters to this method:
• the ACPolicyState value that represents the success or failure of handling the pasteboard policy update.

Pass the value ACPOLICY_APPLIED if the app successfully handled the update. Otherwise, pass the value
ACPOLICY_ERROR. Pass the value ACPOLICY_UNSUPPORTED if your app does not support copying content to the
pasteboard. If you do not implement the -pasteboardPolicyApplied:messagemethod, the AppConnect
singleton behaves as if you passed it ACPOLICY_UNSUPPORTED.

• an NSString explaining the ACPolicyState value.
Typically, you use this string to report the reason the app failed to apply the pasteboard policy update. The
string is reported in the MobileIron server log files.

The -appConnect:copyAttemptedWhenUnauthorized: callback method

You optionally implement this method, which is in the AppConnectDelegate protocol:

-(void) appConnect:(AppConnect *)appConnect copyAttemptedWhenUnauthorized:
(ACPasteboardPolicy)pasteboardPolicy;

This method is useful because when the pasteboard policy is ACPASTEBOARDPOLICY_UNAUTHORIZED, iOS behavior
still causes the copy button to display. An end user who taps the copy button sometimes expects that text has
been copied. You can implement this method to alert the end user that no text has been copied.

For example:

-(void) appConnect:(AppConnect *)appConnect copyAttemptedWhenUnauthorized:
(ACPasteboardPolicy)pasteboardPolicy {

UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Copy not allowed"
message:@"You are not allowed to copy from this app."
delegate:nil cancelButtonTitle:@"OK" otherButtonTitles: nil];

[alert show];
}

Drag and drop policy API details
The drag and drop policy on the MobileIron server specifies whether AppConnect apps can drag content to all
other apps, to only other AppConnect apps, or not at all.

The AppConnect library enforces this policy. When the policy allows dragging content to only other AppConnect
apps, the AppConnect library notifies your app when the device user attempts to drag content to a non-
AppConnect app. Your app can then notify the device user of the situation.

The -pasteboardPolicyApplied:message: acknowledgmentmethod

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 94

Drag and drop policy method

The AppConnect library enforces the MobileIron server’s drag and drop policy. Therefore, your app is not aware
of the policy setting. Therefore, no enumeration describing the settings is necessary, and you do not have to
handle the setting or changes to the setting in your app.

However, when the policy allows dragging content to only other AppConnect apps, a device user can still attempt
to drag content to non-AppConnect apps. That attempt fails. In this situation, the AppConnect library calls a
callback method.

You optionally implement this method, which is in the AppConnectDelegate protocol:

- (void)appConnectAttemptedDragAndDropToNonAppConnectApp:(AppConnect *)appConnect;

You can implement this method to alert the end user that dragging content to non-AppConnect apps is not
allowed.

For example:

-(void) appConnect:(AppConnect *)appConnect appConnectAttemptedDragAndDropToNonAppConnectApp:
{

UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Drag and drop not allowed"
message:@"You are not allowed to drag content from this app to unsecured apps."
delegate:nil cancelButtonTitle:@"OK" otherButtonTitles: nil];

[alert show];
}

Open In policy API details
Specifically, when an app is allowed to use Open In, it can share a document with another app, or an app’s
extension, or the native iOS mail app. This capability:
• is usually presented to the user as an Open In menu item.
• includes sending documents or document portions by encoding them in custom URLs handled by other

applications.

Internally, an app uses the UIDocumentInteractionController, QLPreviewController (which in turn uses
UIDocumentInteractionController), and UIActivityViewController classes. The class which the app uses impacts
Open In handling as described in Overview of Open In handling.
• Overview of Open In handling
• The ACOpenInPolicy enumeration
• The openInPolicy and openInWhitelist properties
• Open In policy methods
• Info.plist key related to the Open In policy

Drag anddrop policymethod

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 95

Overview of Open In handling

The behavior of the AppConnect library, and the actions your app takes, depend on the Open In policy status.
• ACOPENINPOLICY_AUTHORIZED -- The application is allowed to use Open In.
• ACOPENINPOLICY_UNAUTHORIZED -- The application is not allowed to use Open In.
• ACOPENINPOLICY_WHITELIST -- The application is allowed to use Open In to send documents only to apps in

the whitelist. To put the iOS native email app in the whitelist, the whitelist must contain both of these bundle
IDs: com.apple.UIKit.activity.Mail and com.apple.mobilemail.

IMPORTANT:
• Regardless of the Open In policy status, when an app makes an Open In request, iOS always displays all the

apps that support the document type.
• Do not use UIActivityViewController to perform Open In functionality. Because of iOS implementation, the

AppConnect library cannot determine which app the end user selects, and therefore, whether it is in the
whitelist. To ensure security, the AppConnect library does not allow Open In to any app when the Open In
policy is ACOPENINPOLICY_WHITELIST and the class used is UIActivityViewController.

The following table summarizes the behavior of the AppConnect library and the actions your app takes for each
Open In status. It assumes you use UIDocumentInteractionController, and do not use UIActivityViewController.

Open In status AppConnect library actions Your app’s actions

AUTHORIZED The AppConnect library performs no actions on Open In
behavior.

Enable user interfaces, if any, that give the user
the option to use Open In.

For example, if your app presents a menu item for
Open In, the menu item should be enabled.

UNAUTHORIZED If a user taps on any of the apps:
• the AppConnect library substitutes a dummy file with a

mangled name. Therefore, the target app cannot open
the file. Target app error handling varies. For example,
some apps display an error pop-up.

• The AppConnect library also calls this callback method if
your app implemented it:
-appConnect:openInAttemptedWhenACOpenInPolicyBlocked:

• Disable user interfaces, if any, that give the
user the option to use Open In. For example,
if your app presents a menu item for Open In,
the menu item should be disabled.
By disabling such user interfaces, your app
does not give the end user the impression
that Open In is possible when the
AppConnect library has disabled it.

• Implement the callback method
-appConnect:
openInAttemptedWhenACOpenInPolicyBlocked:
In the method, notify the user that Open In is
not allowed.
Note that if you disabled all Open In user
interfaces, this method will not be called.

WHITELIST If a user taps on an app that is not in the whitelist:
• the AppConnect library substitutes a dummy file with a

mangled name. Therefore, the target app cannot open
the file. Target app error handling varies. For example,
some apps display an error pop-up.

• Enable user interfaces, if any, that give the
user the option to use Open In. For example,
if your app presents a menu item for Open In,
the menu item should be enabled.

• Implement the callback method
-appConnect:

TABLE 12. OPEN IN ACTIONS TAKEN BY THEAPPCONNECT LIBRARY AND YOUR APP

Overview ofOpen In handling

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 96

Open In status AppConnect library actions Your app’s actions

• The AppConnect library also calls this callback method if
your app implemented it:
-appConnect:openInAttemptedWhenACOpenInPolicyBlocked:

openInAttemptedWhenACOpenInPolicyBlocked:
In the method, notify the user that Open In is
not allowed to the selected app.

TABLE 12. OPEN IN ACTIONS TAKEN BY THEAPPCONNECT LIBRARY AND YOUR APP (CONT.)

The ACOpenInPolicy enumeration

The ACOpenInPolicy enumeration provides the possible Open In statuses for the app:

The openInPolicy and openInWhitelist properties

The following read-only properties on the AppConnect singleton relate to the Open In policy:

Property Description

openInPolicy An ACOpenInPolicy value that indicates the current status of the
Open In policy for the app.

openInWhitelist An NSSet object that contains NSString objects. Each string is the
bundle ID of an app in the whitelist. The whitelist is the set of apps to
which your app is allowed to send documents.

Because the AppConnect library enforces Open In to only the
whitelisted apps, your app uses this list only if it wants to inform the
user about the list.

NOTE: When theOpen Inpolicyon theMobileIron server
specifies “All AppConnectapps”, theOpen In status
value is ACOPENINPOLICY_WHITELIST. The openInWhitelist
lists all thecurrently authorizedAppConnectapps.
Therefore, your apphandles the “All AppConnectapps”
server setting the sameway it handles the “whitelist”
server setting.

TABLE 13. OPEN IN PROPERTIES ON THEAPPCONNECT SINGLETON

When your app launches:
• Get the singleton AppConnect object and call its -startWithLaunchOptions: method.
• Wait for the -appConnectIsReady: callback method before accessing the openInPolicy and openInWhitelist

properties.

After the -appConnectIsReady: callback method is called, enable or disable user interfaces, if any, that give the
user the option to use the Open In feature, depending on the openInPolicy property value.

Whenever changes to the Open In policy or whitelist occur, the AppConnect library:
1. Updates the properties.

The ACOpenInPolicy enumeration

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 97

2. Calls the -openInPolicyChangedTo:whitelist: method to provide your app the current information.

Open In policy methods

Your app uses the following methods to receive Open In policy updates and to report how the app handled the
updates.
• The -appConnect:openInPolicyChangedTo:whitelist: callback method
• The -openInPolicyApplied:message: acknowledgment method
• The -appConnect:openInAttemptedWhenACOpenInPolicyBlocked: callback method
• The -appConnect:openURLAttemptedWhenUnauthorizedForURL: callback method

The -appConnect:openInPolicyChangedTo:whitelist: callback method

You optionally implement this method, which is in the AppConnectDelegate protocol:

-(void) appConnect:(AppConnect *)appConnect openInPolicyChangedTo:
(ACOpenInPolicy)newOpenInPolicy whitelist:(NSSet *)newWhitelist;

Implement this method only if your app uses the Open In feature.

When a change has occurred to the Open In policy on the MobileIron server, the AppConnect library:
1. Sets the openInPolicy and openInWhitelist properties on the AppConnect object to the new values.
2. Calls the -appConnect:openInPolicyChangedTo:whitelistmethod, which provides the new values in its

parameters.

Your app then:
• Enable or disable user interfaces, if any, that give the user the option to use the Open In feature, depending

on the openInPolicy property value.
• calls the -appConnect:openInPolicyApplied:message:method.

The -openInPolicyApplied:message: acknowledgment method

After your app processes the information provided in the callback method, it must call this acknowledgment
method on the AppConnect singleton:

-(void)openInPolicyApplied:(ACPolicyState)policyState message:(NSString *)message;

Your app passes the following parameters to this method:
• the ACPolicyState value that represents the success or failure of handling the Open In policy update.

Pass the value ACPOLICY_APPLIED if the app successfully handled the update. Otherwise, pass the value
ACPOLICY_ERROR. Pass the value ACPOLICY_UNSUPPORTED if your app does not support the Open In feature. If
you do not implement the -openInPolicyApplied:messagemethod, the AppConnect singleton behaves as if
you passed it ACPOLICY_UNSUPPORTED.

• an NSString explaining the ACPolicyState value.
Typically, you use this string to report the reason the app failed to apply the Open In policy update. The string
is reported in the MobileIron server log files.

Open In policymethods

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 98

The -appConnect:openInAttemptedWhenACOpenInPolicyBlocked: callback method

You optionally implement this method, which is in the AppConnectDelegate protocol:

-(void) appConnect:(AppConnect *)appConnect openInAttemptedWhenACOpenInPolicyBlocked:
(ACOpenInPolicy)OpenInPolicy;

This method is useful because even when the Open In policy is ACOPENINPOLICY_UNAUTHORIZED or

ACOPENINPOLICY_WHITELIST, when an app makes an Open In request, iOS still displays all apps that support the
document type. An end user who taps an app sometimes expects the Open In operation to be successful. You
can implement this method to alert the end user that Open In is not allowed for the selected app.

Note that this method is also called for Open In requests to the iOS native email app when the policy is
ACOPENINPOLICY_UNAUTHORIZED or ACOPENINPOLICY_WHITELIST and the native email app is not on the whitelist.
For example, with these policy settings, this method is called when the device user taps a :mailTo link in a
UIWebView, WKWebView, or UITextView, or when the app attempts to display a
MFMailComposeViewController.

For example:

-(void) appConnect:(AppConnect *)appConnect
openInAttemptedWhenACOpenInPolicyBlocked: (ACOpenInPolicy)OpenInPolicy {

UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Open In not allowed"
message:@"You are not allowed to share a document with this app."
delegate:nil cancelButtonTitle:@"OK" otherButtonTitles: nil];

[alert show];
}

The -appConnect:openURLAttemptedWhenUnauthorizedForURL: callback method

You optionally implement this method, which is in the AppConnectDelegate protocol:

-(void) appConnect:(AppConnect *)appConnect openURLAttemptedWhenUnauthorizedForURL:
(NSURL *)openURL;

This method is called when your app has called -openURL: with the mailto scheme and either:
• the Open In policy is ACOPENINPOLICY_UNAUTHORIZED
• the Open In policy is ACOPENINPOLICY_WHITELIST, and the whitelist does not contain the bundle ID of an app

that can handle the URL, such as the native iOS email app.
However, if the AppConnect app Email+ is installed on the device, it is opened and the callback method is not
called.

Use this method to notify the end user that opening an app to handle the request is not allowed due to the Open
In policy.

The -appConnect:openInAttemptedWhenACOpenInPolicyBlocked: callbackmethod

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 99

Info.plist key related to the Open In policy

Your app can override the Open In policy when the policy blocks the iOS native email app when the app calls
openURL: with the mailto: scheme. Overriding the Open In policy for this scenario means that the iOS native
email app is opened even though the Open In policy is one of the following:
• ACOPENINPOLICY_UNAUTHORIZED
• ACOPENINPOLICY_WHITELIST, and the whitelist does not contain the bundle IDs of the native iOS email app.

To override the Open In policy for this scenario, add the key MI_AC_DISABLE_SCHEME_BLOCKING with the
value YES in the MI_APP_CONNECT dictionary in the app’s Info.plist.

NOTE: TheMobileIron server administrator canalsooverride theOpen Inpolicy for this scenariobyadding
the keyMI_AC_DISABLE_SCHEME_BLOCKINGwith the value true to theapp’s app-specific
configuration.

Open From policy API details
IMPORTANT: TOpen From does not work on iOS 13 devices.

The AppConnect for iOS API provides properties and methods that allow an app to handle its Open From policy
as determined by the MobileIron server. For an overview of this feature, see Data loss prevention policies.

Specifically, when an app is allowed to use Open From, it can receive a document shared from another app (or
another app’s extension) that uses the Open In iOS feature.
• Overview of Open From handling
• The ACOpenFromPolicy enumeration
• The openFromPolicy and openFromWhitelist properties
• Open From policy methods
• Open From policy API details

Overview of Open From handling

The behavior of the AppConnect library, and the actions your app takes, depend on the Open From policy status.

The possible status values are:
• ACOPENFROMPOLICY_AUTHORIZED -- The app is allowed to receive documents shared by any app that uses

Open In.
• ACOPENFROMPOLICY_UNAUTHORIZED -- The app is not allowed to receive documents shared by any app that

uses Open In.
• ACOPENFROMPOLICY_WHITELIST -- The app is allowed to receive documents shared by another app using Open

In only if the other app is in the whitelist. To put the iOS native email app in the whitelist, the whitelist must
contain both of these bundle IDs: com.apple.UIKit.activity.Mail and com.apple.mobilemail.

IMPORTANT:

Info.plist key related to theOpen In policy

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 100

When an app makes an Open In request, iOS always displays all the apps that support the document type,
regardless of:

• the requesting app's Open In policy status if it is an AppConnect app
• the receiving app's Open From policy status if it is an AppConnect app

Although the AppConnect library enforces the Open From policy, this iOS behavior means that your app might
want to keep the user informed of failed attempts. The following table summarizes the behavior of the
AppConnect library and recommended actions for your app relating to Open From.

Open In status AppConnect library actions Your app’s actions

AUTHORIZED The AppConnect library performs no actions on Open From behavior. None

UNAUTHORIZED The AppConnect library does not allow another app to Open In to your app.

Additionally, if a user chooses to Open In to your app, the AppConnect library calls
this callback method if your app implemented it.

-appConnect:openFromAttemptedWhenACOpenFromPolicyBlocked:

Implement the callback
method. In the method, notify
the user that using Open In
from the specified app to
your app is not allowed.

WHITELIST The AppConnect library does not allow an app that is not on the whitelist to Open
In to your app.

Additionally, if a user chooses to Open In to your app from an app that is not in the
whitelist, the AppConnect library calls this callback method if your app
implemented it:

-appConnect:openFromAttemptedWhenACOpenFromPolicyBlocked:

Implement the callback
method. In the method, notify
the user that Open From the
specified app is not allowed.

TABLE 14. OPEN FROM ACTIONS TAKEN BY THEAPPCONNECT LIBRARY AND YOUR APP

The ACOpenFromPolicy enumeration

The ACOpenFromPolicy enumeration provides the possible Open From statuses for the app:

typedef enum {
ACOPENFROMPOLICY_UNAUTHORIZED = 0, // The app is allowed to receive documents shared by

// any app that uses Open In.
ACOPENFROMPOLICY_AUTHORIZED = 1, // The app is not allowed to receive documents shared

// by any app that uses Open In.
ACOPENFROMPOLICY_WHITELIST = 2, // The app is allowed to receive documents shared by

// another app using Open In only if the other app
// is in the whitelist.

} ACOpenFromPolicy;

The openFromPolicy and openFromWhitelist properties

The following read-only properties on the AppConnect singleton relate to the Open From policy:

The ACOpenFromPolicy enumeration

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 101

Property Description

openFromPolicy An ACOpenFromPolicy value that indicates the current status of the
Open From policy for the app.

openFromWhitelist An NSSet object that contains NSString objects. Each string is the
bundle ID of an app in the whitelist. The whitelist is the set of apps
from which your app is allowed to receive documents.

Because the AppConnect library enforces Open From from only the
whitelisted apps, your app uses this list only if it wants to inform the
user about the list.

NOTE: When theOpen Frompolicyon theMobileIron server
specifies “All AppConnectapps”, theOpen From status
value is ACOPENFROMPOLICY_WHITELIST. The
openFromWhitelist lists all thecurrently authorized
AppConnectapps. Therefore, your apphandles the “All
AppConnectapps” server setting the sameway it
handles the “whitelist” server setting.

TABLE 15. OPEN FROM PROPERTIES ON THEAPPCONNECT SINGLETON

When your app launches:
• Get the singleton AppConnect object and call its -startWithLaunchOptions: method.
• Wait for the -appConnectIsReady: callback method before accessing the openFromPolicy and

openFromWhitelist properties.

Whenever changes to the Open From policy or whitelist occur, the AppConnect library:
1. Updates the properties.
2. Calls the -openFromPolicyChangedTo:whitelist: method to provide your app the current information.

Open From policy methods

Your app uses the following methods to receive Open From policy updates and to report how the app handled
the updates.
• The -appConnect:openFromPolicyChangedTo:whitelist: callback method
• The -openFromPolicyApplied:message: acknowledgment method
• The -appConnect:openFromAttemptedWhenACOpenFromPolicyBlocked: callback method

The -appConnect:openFromPolicyChangedTo:whitelist: callback method

You optionally implement this method, which is in the AppConnectDelegate protocol:

-(void) appConnect:(AppConnect *)appConnect openFromPolicyChangedTo:
(ACOpenInPolicy)newOpenFromPolicy whitelist:(NSSet<NSString *>)newWhitelist;

Implement this method only if:

Open Frompolicymethods

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 102

l your app handles documents from other apps using Open In, and
l your app uses the Open From policy value or whitelist in some way, such as displaying information about
it to the user. The AppConnect library enforces the policy.

When a change has occurred to the Open From policy on the MobileIron server, the AppConnect library:
1. Sets the openFromPolicy and openFromWhitelist properties on the AppConnect object to the new values.
2. Calls the -appConnect:openFromPolicyChangedTo:whitelistmethod, which provides the new values in its

parameters.

Your app then:
• Can access the new values. The app can use them, for example, to inform the end user about allowed

Open From apps.
• calls the -appConnect:openFromPolicyApplied:message:method.

The -openFromPolicyApplied:message: acknowledgment method

After your app processes the information provided in the callback method, it must call this acknowledgment
method on the AppConnect singleton:

-(void)openFromPolicyApplied:(ACPolicyState)policyState message:(NSString *)message;

Your app passes the following parameters to this method:
• the ACPolicyState value that represents the success or failure of handling the Open From policy update.

Pass the value ACPOLICY_APPLIED if the app successfully handled the update. Otherwise, pass the value
ACPOLICY_ERROR. Pass the value ACPOLICY_UNSUPPORTED if your app does not support the Open From feature.
If you do not implement the -openInPolicyApplied:messagemethod, the AppConnect singleton behaves as if
you passed it ACPOLICY_UNSUPPORTED.

• an NSString explaining the ACPolicyState value.
Typically, you use this string to report the reason the app failed to apply the Open From policy update. The
string is reported in the MobileIron server log files.

The -appConnect:openFromAttemptedWhenACOpenFromPolicyBlocked: callback method

You optionally implement this method, which is in the AppConnectDelegate protocol:

-(void) appConnect:(AppConnect *)appConnect openFromAttemptedWhenACOpenFromPolicyBlocked:
(ACOpenFromPolicy)OpenFromPolicy
sourceApplication:(NSString *)sourceApplicationId;

This method is useful because even when the Open From policy is ACOPENFROMPOLICY_UNAUTHORIZED or

ACOPENFROMPOLICY_WHITELIST, when another app makes an Open In request, iOS still displays all apps that
support the document type. An end user who taps an app expects the Open In operation to be successful. You
can implement this method to alert the end user that your app is not allowed to receive documents from the other
app.

The -openFromPolicyApplied:message: acknowledgmentmethod

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 103

Print policy API details
The AppConnect for iOS API provides properties and methods that allow an app to handle its print policy as
determined by the MobileIron server. For an overview of this feature, see Data loss prevention policies.

The ACPrintPolicy enumeration

The ACPrintPolicy enumeration provides the possible print statuses for the app:

typedef enum {
ACPRINTPOLICY_UNAUTHORIZED = 0, // The application may not use Print.
ACPRINTPOLICY_AUTHORIZED = 1, // The application may use Print.

} ACPrintPolicy;

The printPolicy property

The read-only printPolicy property on the AppConnect singleton contains an ACPrintPolicy value. The value
reflects the current status of the print policy for the app.

When your app launches:
• Get the singleton AppConnect object and call its -startWithLaunchOptions: method.
• Wait for the -appConnectIsReady: callback method before accessing the printPolicy property.
• After the -appConnectIsReady: callback method is called, enable or disable the app’s ability to print

depending on the printPolicy property value.

Whenever the policy changes, the AppConnect library:
1. updates the printPolicy property.
2. calls the -appConnect:printPolicyChangedTo: method to provide your app the current print policy.

Print policy methods

Your app uses the following methods to receive print policy updates and to report how the app handled the
updates.

The -appConnect:printPolicyChangedTo: callback method

You optionally implement this method, which is in the AppConnectDelegate protocol:

-(void) appConnect:(AppConnect *)appConnect printPolicyChangedTo:
(ACPrintPolicy)newPrintPolicy;

Implement this method only if your app is able to print.

When a change has occurred to the print policy on the MobileIron server, the AppConnect library:
1. Sets the printPolicy property on the AppConnect object to the new ACPrintPolicy value.
2. Calls the -appConnect:printPolicyChangedTo:method, which provides the new ACPrintPolicy value in its

parameter.

Print policy API details

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 104

Your app then:
• Enables or disables its ability to print depending on the passed ACPrintPolicy value.
• calls the -printPolicyApplied:message:method.

The -printPolicyApplied:message: acknowledgment method

After your app processes the information provided in the callback method, it must call this acknowledgment
method on the AppConnect singleton:

-(void) appConnect:(AppConnect *)appConnect printPolicyChangedTo:
(ACPrintPolicy)newPrintPolicy;

Your app passes the following parameters to this method:
• the ACPolicyState value that represents the success or failure of handling the print policy update.

Pass the value ACPOLICY_APPLIED if the app successfully handled the update. Otherwise, pass the value
ACPOLICY_ERROR. Pass the value ACPOLICY_UNSUPPORTED if your app does not support print. If you do not
implement the -printPolicyApplied:messagemethod, the AppConnect singleton behaves as if you passed it
ACPOLICY_UNSUPPORTED.

• an NSString explaining the ACPolicyState value.
Typically, you use this string to report the reason the app failed to apply the print policy update. The string is
reported in the MobileIron server log files.

Log messages API details
The AppConnect for iOS API provides properties and methods that allow an app to log messages at various
severity levels to the device’s console or to files. For an overview of this feature, see Log messages.

The ACLogLevel enumeration

The ACLogLevel enumeration provides the possible log levels:

typedef enum {
ACLOGLEVEL_ERROR = 0, // Error messages
ACLOGLEVEL_WARNING = 1, // Warning messages
ACLOGLEVEL_STATUS = 2, // Significant status messages such as app launch

// and major user actions.
ACLOGLEVEL_INFO = 3, // Additional informational messages
ACLOGLEVEL_VERBOSE = 4, // Verbose messages which may include sensitive information
ACLOGLEVEL_DEBUG = 5, // Debug messages which may include sensitive information

} ACLogLevel;

Log level descriptions and examples

The following table provides guidelines about when to use each log level:

The -printPolicyApplied:message: acknowledgmentmethod

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 105

Log level Description May
contain
sensitive
data?

Examples of when to use

ACLOGLEVEL_ERROR For events that block
access to part or all of the
app.

No • Uncaught exception
• Corrupt or missing data
• Network timeout
• Digital signature validation error
• Certificate error
• Failed assertion
• Exhausted retries
• Error that is reported to the user

ACLOGLEVEL_
WARNING

For events that are
suspicious, but not quite
failures like errors.

No • Caught exception that is ignored
• Failed login due to bad user

credentials
• Unexpected data that is ignored
• Network connection that is

established just before timing out
• Retrying
• Attempted forward compatibility. For

example, the app was developed with
and tested against version 1 of the
server, but the server reported version
2.

• Feature disabled due to low battery
• User attempted something that is not

currently allowed or available
• Warning that is reported to the user

ACLOGLEVEL_STATUS For major changes in the
state of the app

No • App launched
• Version information
• Successfully logged in
• Successfully opened, saved or closed

a user document
• Successfully deleted sensitive data

when authorization state changed to
ACAUTHSTATE_RETIRED

• Notification received from the server
• Status that is reported to the user

ACLOGLEVEL_INFO For minor changes in the
state of the app

No • Changed views within the app
• Heartbeat sent to server
• App entered foreground or

background, became active or
inactive, and other

TABLE 16. LOG LEVEL DESCRIPTIONS

Log level descriptions and examples

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 106

Log level Description May
contain
sensitive
data?

Examples of when to use

UIApplicationDelegate app state
changes

• Interaction with device hardware,
such as taking a photo

• Changes to non-sensitive user
preferences

ACLOGLEVEL_
VERBOSE

For more extensive
information, possibly
including sensitive
details

Yes • Server addresses of requests and
resulting HTTP status codes

• Sensitive details of messages of less
verbose log levels, such as the name
of a saved file

• Device identifiers

ACLOGLEVEL_DEBUG For the most information,
possibly including
sensitive details

Yes • Very precise user actions, such as
touch events and keystrokes

• URL request details
• Memory and performance profiling

information

TABLE 16. LOG LEVEL DESCRIPTIONS (CONT.)

Sensitive data examples

Include sensitive data only in messages logged at the verbose or debug levels. Examples of sensitive data are:
• User data, including document contents, document names, contact lists, notes, bookmarks
• Initial bytes of symmetric encryption keys, private encryption keys, passwords, certificates, signing identities,

and cookies.

Only log initial bytes of these security-related values to ensure the values remain secure.

• Complete URLs and POST data
• Anything that may reveal the content of encrypted data, such as detailed error messages generated by

parsing decrypted data

The logLevel property
+(ACLogLevel)logLevel;

The read-only logLevel class property on the AppConnect class contains an ACLogLevel value. The value
reflects the current log level.

Use the following to get the logLevel value:
[AppConnect logLevel]

Sensitive data examples

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 107

When your app calls the methods +logAtLevel:format:, +logAtLevel:format:args:, or +logAtLevel:message:,
the AppConnect library logs a message only if the log level you pass to the method is less than or equal to the
logLevel property’s current value.

Your app can use the logLevel property to determine what work to do before calling one of the logging methods.
For example, if the app gathers and formats a lot of data when the log level is ACLOGLEVEL_DEBUG, it can skip that
logic when the log level is less than ACLOGLEVEL_DEBUG.

Log level methods

Your app uses the following methods to receive log level updates and to log messages to the device’s console.

The -appConnect:logLevelChangedTo: callback method

You optionally implement this method to receive log level updates. The method is in the AppConnectDelegate
protocol:

-(void) appConnect:(AppConnect *)appConnect logLevelChangedTo:
(ACLogLevel)newLogLevel;

Implement this method only if your app logs messages using the methods +logAtLevel:format: or
+logAtLevel:format:args:.

When a change has occurred to the log level on the MobileIron server, the AppConnect library:
1. Sets the logLevel property on the AppConnect object to the new ACLogLevel value.
2. Calls the -appConnect:logLevelChangedTo:method, which provides the new ACLogLevel value in its

parameter.

Your app can use the notification to start or stop gathering additional data that the app uses in logging.

logAtLevel class methods

Use the following AppConnect class methods to log messages:

+(void)logAtLevel:(ACLogLevel)logLevel format:(NSString *)format,
... NS_FORMAT_FUNCTION(2,3);

+(void)logAtLevel:(ACLogLevel)logLevel format:(NSString *)format
args:(va_list)args NS_FORMAT_FUNCTION(2,0);

+(void)logAtLevel:(ACLogLevel)logLevel message:(NSString *)message;

These class methods use the logLevel parameter to determine whether to log a message. If logLevel parameter
is less than or equal to the logLevel property, the methods log a message.

The methods prepend the format or message string with one of the following strings depending on the logLevel

parameter:
• [Error]

Log levelmethods

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 108

• [Warning]
• [Status]
• [Info]
• [Verbose]
• [Debug]

Then:
• +logAtLevel:format: calls NSLog(), passing along the parameters.
• +logAtLevel:format:args: calls NSLogv(), passing along the parameters.
• +logAtLevel:message: calls NSLog(), passing along the parameter.

The following table describes the parameters of these methods:

Parameter Description

logLevel The ACLogLevel value for the message.

The AppConnect library logs the message only if the passed log level is less than or equal
to the current value of the logLevel property.

format A format string.

This parameter is an NSString, and can include format specifiers that NSString formatting
methods support.

... A comma-separated list of arguments to substitute into the format string in
+logAtLevel:format:.

args A va_list argument in +logAtLevel:format:args

Use +logAtLevel:format:args if you want to explicitly prepare a va_list argument that
contains the list of arguments that you pass to the logging method. Preparing a va_list
argument is useful when you want to wrap AppConnect logging functionality with your own
function.

message A string.

This parameter is an NSString, useful if you do not require format specifiers.

TABLE 17. DESCRIPTIONS OF LOG LEVEL METHODS’ PARAMETERS

-logAtLevel:format:args: example
-(void)myDebugLogWithFormat:(NSString *)format, ... NS_FORMAT_FUNCTION(1,2) {

va_list args;
va_start(args, format);
[AppConnect logAtLevel:ACLOGLEVEL_DEBUG format:format args:args];
va_end(args);

}

-(void)someMethod {

-logAtLevel:format:args: example

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 109

NSString *foo = @"FooValue";
int bar = 4;
[self myDebugLogWithFormat:@"Foo: %@ Bar: %i", foo, bar];

}

Log level methods and dual mode apps

A dual mode app can call the +logAtLevel:format:, +logAtLevel:format:args:, and +logAtLevel:message:

methods and get the +(ACLogLevel)logLevel property even after calling -stop: on the AppConnect singleton
object. When the AppConnect library is stopped, the log level is always ACLOGLEVEL_STATUS.

The notification method -appConnect:logLevelChangedTo: is not called when the AppConnect library is stopped.

Secure services API details
• determine whether secure services are available.
• handle its secure file I/O policy.
• perform file operations on secure, encrypted files.
• determine whether secure copy to the pasteboard is available.

For an overview of this feature, see "Data Protection" in Securing and managing the app using the AppConnect
library.

The ACSecureServicesAvailability enumeration

The enumeration provides the possible secure services availability statuses for the app:

typedef enum {
ACSECURESERVICESAVAILABILITY_UNAVAILABLE = 0, // Secure services are

// currently unavailable.
ACSECURESERVICESAVAILABILITY_AVAILABLE = 1, // Secure services are currently available.

} ACSecureServicesAvailability;

For more information about these values, see The secureServicesAvailability and secureFileIOPolicy properties
.

The ACSecureFileIOPolicy enumeration

The ACSecureFileIOPolicy enumeration provides the possible secure file I/O policy statuses for the app:

NOTE: This policy is not configurableby theMobileIron server administrator; The server always requires
secure file I/O. Formore informationabout these values, see The secureServicesAvailability and
secureFileIOPolicyproperties .

The secureServicesAvailability and secureFileIOPolicy properties

The following read-only properties on the AppConnect singleton relate to secure services:

Log levelmethods and dualmodeapps

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 110

Property Description

secureServicesAvailability An ACSecureServicesAvailability value that indicates whether secure
services are currently available.

Secure services availability depends on the availability of the encryption
key. The encryption key is available only when all of the following are
true:
• the device user has entered the AppConnect passcode, or the device

passcode when no AppConnect passcode is required
• the app is authorized
• the AppConnect singleton is ready (the ready property is YES)

secureFileIOPolicy An ACSecureFileIOPolicy that contains the current status of the secure
file I/O policy for the app.

This secure file I/O policy is not configurable by the MobileIron server
administrator; The server always requires secure file I/O.

TABLE 18. SECURE SERVICES PROPERTIES ON THEAPPCONNECT SINGLETON

When your app launches:
• Get the singleton AppConnect object and call its -startWithLaunchOptions: method.
• Wait for the -appConnectIsReady: callback method before accessing the secureFileIOPolicy property.

After the -appConnectIsReady: callback method is called:
• if the secureServicesAvailability property has the value ACSECURESERVICESAVAILABILITY_AVAILABLE, use

secure file I/O APIs.
• If the secureServicesAvailability property has the value ACSECURESERVICESAVAILABILITY_UNAVAILABLE,

wait for the notification of it changing to ACSECURESERVICESAVAILABILITY_AVAILABLE before using secure file
I/O. Secure file I/O APIs fail when secure services are not available. The notification method is
-appConnect:secureServicesAvailabilityChangedTo:.

• disable or enable special user interfaces for copying to the pasteboard if the pasteboard policy is
ACPASTEBOARDPOLICY_SECURECOPY. Copying to the pasteboard fails if secure services are unavailable and the
pasteboard policy is ACPASTEBOARDPOLICY_SECURECOPY.

NOTE: Because the secure file I/Opolicy is always set to requiredon theMobileIron server, the valueof the
secureFileIOPolicy property is always ACSECUREFILEIOPOLICY_REQUIRED. When secure file I/O is
required, your app shoulduse secure file I/OAPIs (but onlywhile secure servicesareavailable).

If the app becomes unauthorized, secure services change to unavailable. Similarly, if the AppConnect passcode
auto-lock timeout expires, secure services also change to unavailable. When these situations occur, the
AppConnect library calls the -appConnect:secureServicesAvailabilityChangedTo: notification method.

NOTE: Consider thecasewhen theAppConnectpasscodeauto-lock timeout expireswhile your app is
performinga file operation. Theoperationswill fail.Make sure your appcanhandle the returned
error conditions.

The secureServicesAvailability and secureFileIOPolicy properties

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 111

Secure services methods

Your app uses the following methods to receive secure services availability updates and to report how the app
handled the updates.
• The -appConnect:secureServicesAvailabilityChangedTo: callback method
• The -appConnect:secureFileIOPolicyChangedTo: callback method
• The -secureFileIOPolicyApplied:message: acknowledgment method

The -appConnect:secureServicesAvailabilityChangedTo: callback method

You optionally implement this method, which is in the AppConnectDelegate protocol:

-(void) appConnect:(AppConnect *)appConnect secureServicesAvailabilityChangedTo:
(ACSecureServicesAvailability)secureServicesAvailability;

Implement this method only if your app uses secure services.

When secure services availability changes, the AppConnect library:
1. Updates the secureServicesAvailability property on the AppConnect object.
2. Calls the -appConnect:secureServicesAvailabilityChangedTo:method, which provides the new value in its

parameter.

Your app then changes its use of secure services and takes appropriate logic paths depending on the passed
ACSecureServicesAvailability value. For example, if secure services become unavailable, an app should:
• stop doing any secure file I/O. The app might also notify the user of limited functionality. Limited functionality

is necessary because files created using secure file I/O cannot be read or updated with regular file I/O.
• disable or enable special user interfaces for copying to the pasteboard if the pasteboard policy is

ACPASTEBOARDPOLICY_SECURECOPY. Copying to the pasteboard fails if secure services are unavailable and the
pasteboard policy is ACPASTEBOARDPOLICY_SECURECOPY.

The -appConnect:secureFileIOPolicyChangedTo: callback method

You optionally implement this method, which is in the AppConnectDelegate protocol:

-(void) appConnect:(AppConnect *)appConnect secureFileIOPolicyChangedTo:
(ACSecureFileIOPolicy)newSecureFileIOPolicy;

Implement this method only if your app uses secure file I/O AppConnect APIs.

When the secure file I/O policy changes, the AppConnect library:
1. Updates the secureFileIOPolicy property on the AppConnect object.
2. Calls the -appConnect:secureFileIOPolicyChangedTo:method, which provides the new value in its

parameter.

Your app then changes its use of secure file I/O and takes appropriate logic paths depending on the passed
ACSecureFileIOPolicy value.

Secure servicesmethods

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 112

The -secureFileIOPolicyApplied:message: acknowledgment method

After your app processes the information provided in the callback method, it must call this acknowledgment
method on the AppConnect singleton:

-(void)secureFileIOPolicyApplied:(ACPolicyState)policyState message:(NSString *)message;

Your app passes the following parameters to this method:
• the ACPolicyState value that represents the success or failure of handling the secure file I/O policy update.

Pass the value ACPOLICY_APPLIED if the app successfully handled the update. Otherwise, pass the value
ACPOLICY_ERROR. Pass the value ACPOLICY_UNSUPPORTED if your app does not support secure file I/O. If you do
not implement the -secureFileIOPolicyApplied:messagemethod, the AppConnect singleton behaves as if
you passed it ACPOLICY_UNSUPPORTED.

• an NSString explaining the ACPolicyState value.

Typically, you use this string to report the reason the app failed to apply the secure file I/O policy update. The
string is reported in the MobileIron server log files.

Version property
+(NSString *)version;

The read-only version class property on the AppConnect class contains an NSString value. The value reflects
the version of the AppConnect library that the app is working with.

A best practice is to report the AppConnect library version number on your app’s About page. This information is
useful to support organizations if a device user has any issues with the app.

Use the following to get the version value:

[AppConnect version]

Getting upload status for tunneled HTTP/S requests
The AppConnect library and the MobileIron client app are responsible for tunneling network connections using
AppTunnel with HTTP/S tunneling.

The AppConnect for iOS SDK includes APIs that provide upload status for HTTP/S requests. Use these APIs
only if your app uses both of the following:
• the AppTunnel with HTTP/S tunneling feature
• the NSURLConnectionDataDelegate method

-connection:didSendBodyData:totalBytesWritten:totalBytesExpectedToWrite:
or the NSURLSessionTaskDelegateMethod
-URLSession:task:didSendBodyData:totalBytesSent:totalBytesExpectedToSend:
These methods provide upload status for HTTP/S requests.

The -secureFileIOPolicyApplied:message: acknowledgmentmethod

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 113

AppConnect library behavior when using AppTunnel

Apps that access enterprise servers using NSURLConnection or NSURLSession can use AppTunnel with
HTTP/S tunneling, as described in AppTunnel. The AppConnect library determines which URLs to tunnel based
on the MobileIron server configuration, and creates the secure tunnel for HTTP/S requests to and responses
from a server behind an organization’s firewall.

One aspect of this AppTunnel handling is that the AppConnect library intercepts the following
NSURLConnectionDataDelegate and NSURLSession methods:

-connection:didSendBodyData:totalBytesWritten:totalBytesExpectedToWrite:

-URLSession:task:didSendBodyData:totalBytesSent:totalBytesExpectedToSend:

This interception means that if your app has implemented the NSURLConnectionDataDelegate or
NSURLSessionTaskDelegate protocol, your implementation of these methods is never called. If the app
depends on this method, for example, to show the progress of an HTTP/S upload, that functionality will not work
properly.

Therefore, the AppConnect for iOS SDK provides APIs to support showing the progress of an HTTP/S upload
when using AppTunnel with HTTP/S tunneling.

Upload status API overview

The AppConnect for iOS API provides a mechanism for the app to receive the upload status when an HTTP/S
request is tunneled using AppTunnel with HTTP/S tunneling. The mechanism uses:
• The AppConnectNetworkingDelegate protocol that you implement to receive HTTP/S upload progress data
• A category method called -setNetworkingDelegate: in the Networking category on the AppConnect

interface. The app uses -setNetworkingDelegate: to tell the AppConnect object about the object of the class
that implements the AppConnectNetworkingDelegate protocol.

The protocol and the category are defined in AppConnect+Networking.h.

The AppConnectNetworkingDelegate protocol

Implement the AppConnectNetworkingDelegate protocol to receive HTTP/S upload progress data about
tunneled requests. This protocol contains one method that provides an estimate of the progress of the upload.

-(void) uploadProgressForConnectionWithURLRequest:(NSURLRequest *)request
bytesWritten:(NSInteger)bytesWritten
totalBytesWritten:(NSInteger)totalBytesWritten

totalBytesExpectedToWrite:(NSInteger)totalBytesExpectedToWrite;

The AppConnect library calls this method after it intercepts the following NSURLConnectionDataDelegate or
NSURLSessionTaskDelegate methods:

AppConnect library behavior when using AppTunnel

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 114

-connection:didSendBodyData:totalBytesWritten:totalBytesExpectedToWrite:

-URLSession:task:didSendBodyData:totalBytesSent:totalBytesExpectedToSend:

The AppConnectNetworkingDelegate protocol method provides the following information in its parameters:
• the number of bytes written in the latest write
• the total number of bytes written for the connection with this request
• the number of bytes the connection expects to write

The -setNetworkingDelegate: method

The Networking category of the AppConnect interface provides the method -setNetworkingDelegate:. If your
app requires HTTP/S upload progress data on tunneled HTTP/S requests, call this method before sending the
HTTP/S request.

For example:

[[AppConnect sharedInstance] setNetworkingDelegate:myNetworkingDelegate];

where myNetworkingDelegate is an instance of a class that implements the AppConnectNetworkingDelegate
protocol.

Caching tunneled URL responses
Apps that access enterprise servers using NSURLSession can use AppTunnel with HTTP/S tunneling, as
described in AppTunnel. By default, for a tunneled URL request:
• The data for the URL is reloaded from the originating source. Any existing locally cached response is

ignored.
• The data in the response is not stored in the local cache.

The reason that AppTunnel with HTTP/S tunneling does not use locally cached responses is to avoid caching
sensitive enterprise server data on the device.

However, some apps have requirements to use locally cached responses. Some examples are:
• The app requires a response even when the device has no network connectivity.
• The app requires a customized response.

If your app requires locally cached responses for URL requests that use AppTunnel with HTTP/S tunneling, use
the following method, which is on the AppConnect singleton object:

-(void)allowLocalCachingForTunneledRequests:(BOOL)flag;

The value of flag has the following impact:
• true

Allows caching for requests and responses that use AppTunnel with HTTP/S tunneling. However, whether
caching actually occurs depends on the cache policy for the NSURLRequest.

The -setNetworkingDelegate:method

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 115

• false
Clears all cached responses, including responses for URL requests not using AppTunnel with HTTP/S
tunneling.

IMPORTANT: Donot cache sensitivedata.

AppConnectUIApplication class

Using your own UIApplication subclass

If your app uses its own subclass of UIApplication, derive your subclass from AppConnectUIApplication instead
of UIApplication. Information on subclassing AppConnectUIApplication, provided in AppConnectUIApplication.h,
is in Using your own UIApplication subclass.

originalDelegate property (deprecated)

NOTE: Most apps haveno reason touse this property.

The AppConnectUIApplication class also provides one property:

@property(nonatomic, readonly) id<UIApplicationDelegate> originalDelegate;

The AppConnect library depends on knowing about application life cycle events, such as when the application
becomes active. Requiring the app to pass every life cycle event to the AppConnect library would be too much of
a burden on the app. Therefore, the AppConnect library installs a UIApplicationDelegate proxy. This proxy sits
between the UIApplication and your application’s UIApplicationDelegate.

Your application does not do anything to support the proxy. Use your UIApplicationDelegate as you normally
would:
• The AppConnect library does not filter or modify any messages sent by iOS to the UIApplicationDelegate.
• You can still add custom methods to your UIApplicationDelegate. Call the custom method as you normally

would, such as in the following statement:
[[UIApplication sharedApplication] delegate] customMethod];
The proxy passes the method invocation to your UIApplicationDelegate.

• You can set a new UIApplicationDelegate as you normally would:
[[UIApplication sharedApplication] setDelegate:myOtherAppDelegate];

However, until AppConnect 4.0 for iOS, a side effect of the proxy was that the following expression did not return
your UIApplicationDelegate object:

[[UIApplication sharedApplication] delegate]

Therefore, the originalDelegate property was available to return your UIApplicationDelegate object. Using this
property is no longer necessary because the above expression now does return your UIApplicationDelegate
object.

NoteTheFollowing:

AppConnectUIApplication class

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 116

Another side effect of the proxy was that the following expression did not return your UIApplicationDelegate’s
class:
[[[UIApplication sharedApplication] delegate] class]

Instead, it returned the proxy class. Therefore, using isKindofClass: was necessary. For example, the following
returned YES:
[[UIApplication sharedApplication] isKindOfClass:[MyAppDelegate class]]

Encryption keys for custom cryptography
• Overview of encryption keys for custom cryptography
• The -derivedAppKeyWithIdentifier:error: method
• The -derivedSharedKeyWithIdentifier:error: method
• Error returns for derived key methods
• Deprecated custom cryptography methods

Overview of encryption keys for custom cryptography

The AppConnect library provides methods to obtain keys useful for cryptographic operations. It can provide two
types of keys:
• App keys, which are keys that are specific to your app on the device
• Shared keys, which are keys that are shared among all AppConnect apps on the device

If your app requires cryptography but the AppConnect secure file I/O APIs are not sufficient, it can use an app
key with custom cryptographic routines. For example, consider an app that currently relies on the iOS keychain
for secure storage. The keychain is not secure if the device lacks a device passcode. Refactoring the app to use
the secure file I/O APIs is possibly prohibitively difficult. Therefore, instead of refactoring, you can add code to
encrypt data being stored in the keychain, and you can use an app key as the encryption key.

If your app shares encrypted data with another AppConnect app, you can use a shared key as the encryption
key.

Use one of the following methods, which are on the AppConnect singleton object:

-(nullable ACSensitiveData *)derivedAppKeyWithIdentifier:(NSString *)identifier
error:(NSError **)error;

-(nullable ACSensitiveData *)derivedSharedKeyWithIdentifier:(NSString *)identifier
error:(NSError **)error;

If successful, these methods return an ACSensitiveData object containing a 32-byte key. These methods are
successful only when secure services are available.

Related topics

Securing sensitive data such as encryption keys

Encryption keys for customcryptography

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 117

The -derivedAppKeyWithIdentifier:error: method

The -derivedAppKeyWithIdentifier:error:method derives an encryption key. This “app key” is unique to this
instance of your app. Calling this method with the same identifier in an instance of your app on a different device
derives a different app key.

The app key is based on the following:
• the app
• the identifier passed as an argument

The identifier is any string. Use a different identifier for each encryption purpose. For example, if your app
uses AES, SHA-1, and HMAC routines, use a different identifier for each. Reusing an identifier for different
encryption purposes weakens the key, making it more vulnerable to brute force attacks.

• a secure services seed
Each device has one secure services seed, which is generated by the MobileIron client app. The seed is lost
if the device user deletes the MobileIron client app, or the MobileIron server retires the device. The
MobileIron client app does not back up the seed, so a backup and restore of the device will also cause the
seed to be lost.

The -derivedSharedKeyWithIdentifier:error: method

By using the shared key provided by this method, more than one AppConnect app on the same device can share
encrypted data. For example, one AppConnect app can encrypt data using a derived shared key created with a
particular identifier. Another AppConnect app can then use the same identifier to get the shared key, and decrypt
the data with the shared key.

The -derivedSharedKeyWithIdentifier:error:method derives an encryption key based on the following:
• the identifier passed as an argument
• a secure services seed

Each device has one secure services seed, which is generated by the MobileIron client app. The seed is lost
if the device user deletes the MobileIron client app, or the MobileIron server retires the device. The
MobileIron client app does not back up the seed, so a backup and restore of the device will also cause the
seed to be lost.

Error returns for derived key methods

When unsuccessful, the -derivedAppKeyWithIdentifier:error: and -derivedSharedKeyWithIdentifier:error:

methods return an NSError object as shown in the following table:

NSError domain NSError code Description

ACErrorDomain ACErrorNoKeys Secure services are not available.

ACErrorDomain ACErrorInvalidArg The identifier argument is nil or has zero-length.

TABLE 19. NSERROR OBJECTS RETURNED BY DERIVED KEY METHODS

The NSError domain and code values are defined in ACError.h.

The -derivedAppKeyWithIdentifier:error: method

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 118

Deprecated custom cryptography methods

The following methods are deprecated.
• The -derivedAppKey:withIndex: method (deprecated)
• The -derivedSharedKey:withIndex: method (deprecated)

MobileIron recommends you use instead the -derivedAppKeyWithIdentifier:error: and
derivedSharedKeyWithIdentifier:error: methods.

The -derivedAppKey:withIndex: method (deprecated)

The -derivedAppKey:withIndex:method derives an encryption key. This app key is unique to this instance of
your app. Calling this method with the same index in an instance of your app on a different device derives a
different app key.

The app key is based on the following:
• the app
• the index passed as an argument

The index is any string. Use a different index for each encryption purpose. For example, if your app uses
AES, SHA-1, and HMAC routines, use a different index for each. Reusing an index for different encryption
purposes weakens the key, making it more vulnerable to brute force attacks.

• a secure services seed
Each device has one secure services seed, which is generated by the MobileIron client app. The seed is lost
if the device user deletes the MobileIron client app, or the MobileIron server retires the device. The
MobileIron client app does not back up the seed, so a backup and restore of the device will also cause the
seed to be lost.

The -derivedSharedKey:withIndex: method (deprecated)

The -derivedSharedKey:withIndex:method derives an encryption key based on the following:
• the index passed as an argument
• a secure services seed

Each device has one secure services seed, which is generated by the MobileIron client app. The seed is lost
if the device user deletes the MobileIron client app, or the MobileIron server retires the device. The
MobileIron client app does not back up the seed, so a backup and restore of the device will also cause the
seed to be lost.

By using a shared key, more than one AppConnect app on the same device can share encrypted data. For
example, one AppConnect app can use a derived shared key with a particular index to encrypt data. Another
AppConnect app can then get the same derived shared key by using the same index to decrypt the data.

Securing sensitive data such as encryption keys
For heightened security of especially sensitive data, such as encryption keys and passwords, you can use the
classes ACSensitiveData or ACSensitiveMutableData. These classes use the Apple hardware known as Secure

Deprecated customcryptographymethods

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 119

Enclave. By using these classes, you reduce the sensitive data’s attack surface, because the sensitive data is
stored in the Secure Enclave rather than in plain-text in memory. Without these classes, sensitive data such as
keys are stored in memory, and therefore can be captured in a memory dump.

To benefit from these classes, the device must:
• have Apple’s Secure Enclave hardware.

Devices that have biometric security have Secure Enclave hardware.

• be running iOS 11 through the most recently released version as supported by MobileIron
• be running Mobile@Work 9.8 for iOS through the most recently released version as supported by MobileIron

MobileIron Go does not support this feature.

Securing sensitive data involves the following:
• Coding your app to secure sensitive data
• Configuring the MobileIron server to secure sensitive data for your app
• Debugging ACSensitiveData usage

Coding your app to secure sensitive data

The interfaces to use are:

@interface ACSensitiveData : NSData

@interface ACSensitiveMutubleData : ACSensitiveData

@interface ACSensitiveDataContainer : NSObject

These interfaces are defined in ACSensitiveData.h.

To secure your data, such as encryption keys, create an ACSensitiveData or ACSensitiveMutableData object
and populate it with your sensitive data.

For data that you want to keep for a long time period, create an ACSensitiveDataContainer to hold the
ACSensitiveData or ACSensitiveMutableData object.

Objective-C example

ACSensitiveData *key = [ACSensitiveData dataWithBytes:keyData.bytes length:keyData.length];

ACSensitiveDataContainer *containerizedKey =
[ACSensitiveDataContainer containerWithData:key];

Swift example

Coding your app to secure sensitive data

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 120

let key = ACSensitiveData(bytes: keyData.bytes, length: UInt(keyData.length))

let containerizedKey = ACSensitiveDataContainer(data: key)

NOTE: Donot use theACSensitiveDatamethods -copyWithZone: or -mutableCopyWithZone:.

Configuring the MobileIron server to secure sensitive data for your app

The MobileIron server administrator configures whether the ACSensitiveData and ACSensitiveMutableData
objects are secured with Apple’s Secure Enclave. The administrator configures this choice per AppConnect app.
Therefore, in the documentation you provide the MobileIron server administrators, specify that your app uses the
Secure Enclave if it is available.

The MobileIron server administrator uses the key named MI_AC_CONTAINER_TYPE in the app’s app
configuration. The AppConnect library consumes this key. It is not passed to your app in Its configuration key-
value pairs.

The possible values for MI_AC_CONTAINER_TYPE are:

Value Description

ENCLAVE ACSensitiveData and ACSensitiveMutableData objects are stored in the Secure
Enclave, if available on the device.

LOCAL ACSensitiveData and ACSensitiveMutableData objects are not stored in the
Secure Enclave.

Debugging ACSensitiveData usage

Because it is a hardware feature, you cannot test Secure Enclave usage in the iOS simulator. However, when
running in debug mode on a device or in the iOS simulator, you can use the following environment variables on
your app to check if your ACSensitiveData objects are being held in memory for too long. The value of MI_AC_
CONTAINER_TYPE has no impact on using these environment variables.
• AC_SENSITIVE_DATA_MAX_LIFETIME

Set its value to a number of seconds. An exception is raised if an ACSensitiveData or
ACSensitiveMutableData object is not deallocated before the specified number of seconds since its
allocation. The call stack points to where the object was allocated.

• AC_SENSITIVE_DATA_MAX_RUN_LOOP_ITERATIONS
Set its value to a positive integer. An exception is raised if an ACSensitiveData or ACSensitiveMutableData
object is not deallocated before the run loop in which is was allocated completes the specified number of
iterations. The call stack points to where the object was allocated.

Configuring theMobileIron server to secure sensitive data for your app

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 121

iOS active state change notifications due to AppConnect
control switches
Control switches from an AppConnect app to the MobileIron client app and then back to the app in certain
situations. You can receive notifications when the app is about to move from or to the iOS active state due to
these AppConnect control switches.

Use these notifications to preserve your app’s state before it re-signs from the iOS active state, and restore your
app’s state when it moves back to the iOS active state. For example, if your app is in full screen mode, preserve
that fact so that the app can return to full screen mode.

Implement the following callback methods in the AppConnectDelegate protocol, defined in AppConnect.h:

-(void) applicationWillResignActiveForAppConnect:(AppConnect *)appConnect;

-(void) applicationDidBecomeActiveFromAppConnect:(AppConnect *)appConnect;

NOTE: If thecallbackmethodsarenot implemented in -applicationWillResignActiveand -
applicationDidBecomeActive:, theapp's state is not immediately updated in theMobileIronclient.

Situations that trigger the state change notifications

The following situations trigger the iOS active state change notifications:
• The app checkin interval expires while an AppConnect app is running. The MobileIron client app gets

AppConnect policy updates for all the AppConnect apps, and then control switches back to the app that was
running.

• The auto-lock time expires while an AppConnect is running.

Note that the following conditions also cause control to switch to the MobileIron client app, but do not trigger the
state change notifications:
• the first time an app is launched
• the first time an app is relaunched after iOS terminated it
• after the device is powered on and the device user first launches an AppConnect app.
• after the device user logs out of secure apps in the MobileIron client app, and then relaunches an

AppConnect app.

Furthermore, if control switches to the MobileIron client app, but, due to user actions, does not directly switch
back to the app, -applicationDidBecomeActiveFromAppConnect: is not triggered. For example,
-applicationDidBecomeActiveFromAppConnect: is not triggered if control switches from the app to the MobileIron
client app because the auto-lock time expires, but the user presses the Home button instead of entering the
AppConnect passcode.

Secure file I/O API details
The AppConnect for iOS SDK provides the following types of secure file I/O APIs:

iOS active state change notifications due to AppConnect control switches

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 122

• POSIX-style secure file APIs
• ACFileHandle class for AppConnect secure file I/O
• Objective-C categories for AppConnect secure file I/O

These APIs:
• Encrypt all file contents when writing, and decrypt the contents when reading.
• Allow an app to share encrypted files with other AppConnect apps. See Secure file I/O API details.
• Fail if secure services are not available. See Secure services API details.
• Some of the ACFileHandle secure methods and some of the category methods take a pointer to an NSError

object as a parameter. See NSError objects that secure Objective-C methods return.

NoteTheFollowing:
• Do not use other file I/O methods on a file if you use AppConnect secure file I/O methods on the file.

When you use secure file I/O APIs on a file, the first step is always to create the file using a secure file I/O
API. After that, use only secure file I/O APIs on the file.
Using both AppConnect secure file I/O methods and other file I/O methods can sometimes irreparably
corrupt the files. You can use both POSIX-style AppConnect secure file I/O methods and the AppConnect
secure file Objective-C subclass and category methods.

• Do not use AppConnect secure file I/O methods on a file if it contains no secure information.
Apps that write secure data sometimes also write data that does not need to be secured. For example, user
settings and preferences typically do not need to be secured. Use regular file I/O methods to save this
information.

• Do not use AppConnect secure file I/O methods to read files bundled with you app, such as strings files,
images, and plists.

POSIX-style secure file APIs

To secure the contents of your app’s files, your Objective-C or Swift app can use C-language, POSIX-style,
AppConnect secure file APIs declared in ACSecureFile.h. These APIs:
• Work only on regular files.

They do not work on directories, pipes, named pipes, character specials, block specials, or symbolic links.
• Encrypt all file contents when writing, and decrypt the contents when reading.
• Have the same parameters, return types, and functionality as their corresponding POSIX APIs, but with the

added encryption and decryption capabilities.
For information on the corresponding POSIX APIs, see, for example, the sections “Standard I/O Streams”
and “System Interfaces” at:
http://pubs.opengroup.org/onlinepubs/009696699/functions/contents.html

• Fail if secure services are not available.
• Provide additional error information besides setting errno.

The following table shows each secure file I/O API and its corresponding POSIX API:

POSIX-style secure file APIs

http://pubs.opengroup.org/onlinepubs/009696699/functions/contents.html

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 123

Secure File I/O API Corresponding POSIX API

ACSecureFileClose() close()

ACSecureFileLseek() lseek()

ACSecureFileOpen() open()

ACSecureFilePread() pread()

ACSecureFilePwrite() pwrite()

ACSecureFileRead() read()

ACSecureFileReadv() readv()

ACSecureFileRename() rename()

ACSecureFileWrite() write()

ACSecureFileWritev() writev()

ACSecureFstat() fstat()

ACSecureFtruncate() ftruncate()

ACSecureLstat() lstat()

ACSecureTruncate() truncate()

TABLE 20. SECURE FILE I/OAPI AND CORRESPONDING POSIX API

Additional error returns using ACSecureFileLastError()

The secure file I/O APIs add a layer on top of the POSIX APIs to provide encryption. This layer allows the secure
file I/O APIs to provide more detailed error information than available in errno. This additional error information is
available through the method ACSecureFileLastError(), defined in ACSecureFile.h:

int ACSecureFileLastError(int fd);

You can call this method when:
• a POSIX-style secure file I/O API has failed.
• the failed method operated on a valid and open file descriptor.

The ACSecureFileLastError()method returns one of the following enumeration values, defined in ACError.h:

Additional error returns using ACSecureFileLastError()

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 124

Return value Description

ACE_NO_ERROR No error occurred.

ACE_NO_KEYS_ERROR AppConnect encryption keys are not available.

This error occurs when secure services are not available. See The
secureServicesAvailability and secureFileIOPolicy properties .

ACE_FILE_TOO_BIG_ERROR The operation would result in exceeding the maximum file size, which
is 6,961,618,944 bytes.

ACE_NEGATIVE_FILE_LEN_ERROR The operation would result in a negative file size.

ACE_LOW_MEMORY_ERROR Amemory alloc failed while trying to perform the operation.

ACE_BAD_KEY_OR_CORRUPT_DATA_
ERROR

An encryption operation failed, due to either a corrupt encryption key
or other corrupt data.

Some situations that can cause this error are:
• The device user has uninstalled and reinstalled the MobileIron

client app, and re-registered it with the MobileIron server.
• Mixing secure and regular file routines on a file.

ACE_INVALID_ARG One of the arguments had an invalid value.

ACE_REGULAR_FILE_ONLY_ERROR An NSURL parameter is not a file URL. The operation is allowed only
on regular files.

ACE_INTERNAL_ERROR An error occurred in the encryption layer of the function. The file is
possibly no longer accessible.

TABLE 21. ACSECUREFILELASTERROR() RETURN VALUES

The following table shows which secure file I/O APIs set these additional error values:

Secure File I/O API Sets these additional return values

ACSecureFileClose() None

ACSecureFileLseek() • ACE_NO_KEYS_ERROR
• ACE_FILE_TOO_BIG_ERROR
• ACE_NEGATIVE_FILE_LEN_ERROR
• ACE_INVALID_ARG

ACSecureFileOpen() None

ACSecureFilePread() • ACE_NO_KEYS_ERROR
• ACE_READ_ON_WRITEONLY_ERROR
• ACE_INTERNAL_ERROR
• ACE_LOW_MEMORY_ERROR
• ACE_BAD_KEY_OR_CORRUPT_DATA_ERROR

TABLE 22. ADDITIONAL RETURN VALUES SET BY SECURE FILE I/OAPIS

Additional error returns using ACSecureFileLastError()

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 125

Secure File I/O API Sets these additional return values

ACSecureFilePwrite() • ACE_NO_KEYS_ERROR
• ACE_WRITE_ON_READONLY_ERROR
• ACE_FILE_TOO_BIG_ERROR
• ACE_LOW_MEMORY_ERROR
• ACE_BAD_KEY_OR_CORRUPT_DATA_ERROR
• ACE_INTERNAL_ERROR

ACSecureFileRead() • ACE_NO_KEYS_ERROR
• ACE_READ_ON_WRITEONLY_ERROR
• ACE_INTERNAL_ERROR
• ACE_LOW_MEMORY_ERROR
• ACE_BAD_KEY_OR_CORRUPT_DATA_ERROR

ACSecureFileReadv() • ACE_NO_KEYS_ERROR
• ACE_READ_ON_WRITEONLY_ERROR
• ACE_LOW_MEMORY_ERROR
• ACE_BAD_KEY_OR_CORRUPT_DATA_ERROR
• ACE_INTERNAL_ERROR

ACSecureFileRename() None

ACSecureFileWrite() • ACE_NO_KEYS_ERROR
• ACE_WRITE_ON_READONLY_ERROR
• ACE_FILE_TOO_BIG_ERROR
• ACE_LOW_MEMORY_ERROR
• ACE_BAD_KEY_OR_CORRUPT_DATA_ERROR
• ACE_INTERNAL_ERROR

ACSecureFileWritev() • ACE_NO_KEYS_ERROR
• ACE_WRITE_ON_READONLY_ERROR
• ACE_FILE_TOO_BIG_ERROR
• ACE_LOW_MEMORY_ERROR
• ACE_BAD_KEY_OR_CORRUPT_DATA_ERROR
• ACE_INTERNAL_ERROR

ACSecureFstat() • ACE_NO_KEYS_ERROR
• ACE_INTERNAL_ERROR

ACSecureFtruncate() • ACE_NO_KEYS_ERROR
• ACE_TRUNC_ON_READONLY_ERROR
• ACE_FILE_TOO_BIG_ERROR
• ACE_NEGATIVE_FILE_LEN_ERROR
• ACE_LOW_MEMORY_ERROR
• ACE_INTERNAL_ERROR

ACSecureLstat() None

ACSecureTruncate() None

TABLE 22. ADDITIONAL RETURN VALUES SET BY SECURE FILE I/OAPIS (CONT.)

Additional error returns using ACSecureFileLastError()

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 126

ACFileHandle class for AppConnect secure file I/O

The AppConnect for iOS SDK provides one Objective-C subclass for secure file I/O:

@interface ACFileHandle:NSFileHandle

ACFileHandle is declared in ACFileHandle.h.

To secure the contents of your app’s files, your app can use ACFileHandle instead of NSFileHandle. Note that
ACFileHandle:
• Works only on regular files.

It does not work on directories, sockets, pipes, or devices as NSFileHandle does.
• Overrides most of the NSFileHandle methods, encrypting all file contents when writing, and decrypting the

contents when reading.
• Adds methods to support a special error indicating that the encryption key is not available. These methods

encrypt all file contents when writing, and decrypt when reading.
Each of these added methods correspond to an overridden method. The difference is that the added method
takes a pointer to an NSError object as a parameter.

NOTE: Always use theaddedmethod that hasanNSError parameter rather than thecorresponding
overriddenmethod. TheNSError parameter allows you tocode theerror handlingnecessarywhen
theencryption key is not available.

• Does not support asynchronous file I/O.
ACFileHandle does not override the methods of NSFileHandle related to asynchronous I/O. Calling one of
the NSFileHandle asynchronous I/O methods on a ACFileHandle object throws an exception.

• Cannot be used if secure services are not available.

Overridden and added NSFileHandle methods

ACFileHandle overrides many methods of NSFileHandle to provide secure file I/O. It also adds methods
corresponding to overridden methods to support an NSError parameter. The NSError parameter allows you to
code the error handling necessary when the encryption key is not available.

The following table lists the overridden and added methods. Use the methods just as you would use the
corresponding NSFileHandle methods, with the differences given in the table.

NOTE: If anoverriddenmethodhasacorrespondingaddedmethod that includesanNSError parameter,
always use theaddedmethod.

ACFileHandle class for AppConnect secure file I/O

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 127

Overridden and added methods Usage differences with NSFileHandle
method

+ (id) fileHandleForReadingAtPath:(NSString *)path; The path parameter must be a regular file.

NOTE: Donot use. Use instead the
correspondingaddedmethod
that includesanNSError
parameter.

+ (id) fileHandleForReadingAtPath:(NSString *)path

error:(NSError *__autoreleasing *) error;

The path parameter must be a regular file.

Adds an NSError parameter.

+ (id) fileHandleForReadingFromURL:(NSURL *)url

error:(NSError *__autoreleasing *) error;

The url parameter must be a file URL, and
point to a regular file.

+ (id) fileHandleForUpdatingAtPath:(NSString *)path; The path parameter must be a regular file.

NOTE: Donot use. Use instead the
correspondingaddedmethod
that includesanNSError
parameter.

+ (id) fileHandleForUpdatingAtPath:(NSString *)path

error:(NSError *__autoreleasing *) error;

The path parameter must be a regular file.

Adds an NSError parameter.

+ (id) fileHandleForUpdatingURL:(NSURL *)url

error:(NSError *__autoreleasing *) error;

The url parameter must be a file URL, and
point to a regular file.

+ (id) fileHandleForWritingAtPath:(NSString *)path; The path parameter must be a regular file.

NOTE: Donot use. Use instead the
correspondingaddedmethod
that includesanNSError
parameter.

+ (id) fileHandleForWritingAtPath:(NSString *)path

error:(NSError *__autoreleasing *) error;

The path parameter must be a regular file.

Adds an NSError parameter.

+ (id) fileHandleForWritingToURL:(NSURL *)url

error:(NSError *__autoreleasing *)error;

The url parameter must be a file URL, and
point to a regular file.

- (NSData *) availableData; No usage differences.

NOTE: Donot use. Use instead the
correspondingaddedmethod
that includesanNSError

TABLE 23. NSFILEHANDLE OVERRIDDEN AND ADDED METHODS

Overridden andaddedNSFileHandlemethods

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 128

Overridden and added methods Usage differences with NSFileHandle
method

parameter.

- (NSData *) availableDataWithError:

(NSError *__autoreleasing *)error;

Adds an NSError parameter.

- (NSData *) readDataToEndOfFile; No usage differences.

NOTE: Donot use. Use instead the
correspondingaddedmethod
that includesanNSError
parameter.

- (NSData *) readDataToEndOfFileWithError:

(NSError *__autoreleasing *)error;

Adds an NSError parameter.

- (NSData *) readDataOfLength:(NSUInteger) length; No usage differences.

NOTE: Donot use. Use instead the
correspondingaddedmethod
that includesanNSError
parameter.

- (NSData *) readDataOfLength:(NSUInteger) length

(NSError *__autoreleasing *)error;

Adds an NSError parameter.

- (void) writeData:(NSData *) data; No usage differences.

NOTE: Donot use. Use instead the
correspondingaddedmethod
that includesanNSError
parameter.

- (void) writeData:(NSData *) data

(NSError *__autoreleasing *)error;

Adds an NSError parameter.

- (unsigned long long) offsetInFile; No usage differences.

- (unsigned long long) seekToEndOfFile; No usage differences.

- (void) seekToFileOffset:

(unsigned long long)offset;

No usage differences.

TABLE 23. NSFILEHANDLE OVERRIDDEN AND ADDED METHODS (CONT.)

Overridden andaddedNSFileHandlemethods

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 129

Overridden and added methods Usage differences with NSFileHandle
method

- (void) truncateFileAtOffset:

(unsigned long long)offset;

No usage differences.

- (void) synchronizeFile; No usage differences.

- (void) closeFile; No usage differences.

TABLE 23. NSFILEHANDLE OVERRIDDEN AND ADDED METHODS (CONT.)

ACFileHandle example

The following example makes a secure copy of an unsecured file. Specifically, the example:
1. Creates a secure file.
2. Writes the contents of the unsecured file /etc/group into it.
3. Reads the contents of the secure file.

NOTE: For brevity, theexampledoes not includeerror handling.

- (void) ACFileHandleExample
{

NSString *secureFileName = @"/tmp/secureGroup";
NSError *error;

// Read the contents of /etc/group
NSData *etcGroupData = [NSData dataWithContentsOfFile:@"/etc/group"];

// Use the default file manager to create the secure file.
[[NSFileManager defaultManager] createFileAtPath:secureFileName

contents:nil attributes:nil];

// Get the file handle for writing to the secure file just created.
ACFileHandle *acFileHandle =

[ACFileHandle fileHandleForWritingAtPath:secureFileName error:&error];

// Write the contents of /etc/group to the secure file.
[acFileHandle writeData:etcGroupData error:&error];

// Close the secure file.
[acFileHandle closeFile];

// Open the secure file for reading.
acFileHandle = [ACFileHandle fileHandleForReadingAtPath:secureFileName error:&error];

//read entire contents of the secure file.
NSData *duplicate = [acFileHandle readDataToEndOfFileWithError:&error];

// Close the secure file
[acFileHandle closeFile];

ACFileHandle example

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 130

// Note: The contents of NSData objects 'duplicate' and 'etcGroupData'
// are identical.

}

Objective-C categories for AppConnect secure file I/O

The AppConnect for iOS SDK provides the following categories, in which each method corresponds to a method
in the original class, but provides a secure version of the functionality.

l NSFileManager category

l NSData (ACSecureFile) category

l NSData (ACSharedSecureFile) and ACFileHandle (ACSharedSecureFile) categories

l NSKeyedArchiver category

l NSKeyedUnarchiver category

l NSDictionary category

l NSMutableDictionary category

l NSArray category

l NSMutableArray category

NoteTheFollowing:

l Thesemethods cannot be used if secure services are not available.

l Thesemethods provide a special error indicating that the encryption key is not available.
Methods that take a pointer to an NSError object as a parameter provide this error indication. See NSError
objects that secure Objective-Cmethods return.

l The header files are in the AppConnect.xcframework in <category name>.h.

NSFileManager category

Each method in the NSFileManager category corresponds to a method in the NSFileManager class, but provides
a secure version of the functionality. For more information about the functionality and usage, see
NSFileManager in developer.apple.com.

NOTE: Thecategorymethods returnanNSError object. Themethods set theproperties on theobjectas
described inNSError objects that secureObjective-Cmethods return.

The following table shows each added method and its corresponding method in NSFileManager.

Objective-C categories for AppConnect secure file I/O

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 131

Method in category Corresponding method in NSFileManager

- (BOOL)createSecureFileAtPath:

(NSString *)path

contents:(NSData *)contents

attributes:(NSDictionary *)attributes

error:(

NSError *__autoreleasing *)error;

- (BOOL)createFileAtPath:

(NSString *)path

contents:(NSData *)contents

attributes:(NSDictionary *)attributes;

- (BOOL)moveSecureFileAtPath:

(NSString *)srcPath

toPath:(NSString *)dstPath

error:(

NSError *__autoreleasing *)error;

- (BOOL)moveItemAtPath:

(NSString *)srcPath

toPath:(NSString *)dstPath

error:(NSError **)error;

- (BOOL)moveSecureFileAtURL:

(NSURL *)srcURL

toURL:(NSURL *)dstURL

error:(

NSError *__autoreleasing *)error;

- (BOOL)moveItemAtURL:

(NSURL *)srcURL

toURL:(NSURL *)dstURL

error:(NSError **)error;

- (BOOL)copySecureFileAtPath:

(NSString *)srcPath

toPath:(NSString *)dstPath

error:(

NSError *__autoreleasing *)error;

- (BOOL)copyItemAtPath:

(NSString *)srcPath

toPath:(NSString *)dstPath

error:(NSError **)error;

- (BOOL)copySecureFileAtURL:

(NSURL *)srcURL

toURL:(NSURL *)dstURL

error:(

NSError *__autoreleasing *)error;

- (BOOL)copyItemAtURL:

(NSURL *)srcURL

toURL:(NSURL *)dstURL

error:(NSError **)error;

TABLE 24. NSFILEMANAGER CATEGORY METHODS

NSFileManager category

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 132

Method in category Corresponding method in NSFileManager

- (NSData *)secureContentsAtPath:

(NSString *)path

error:(

NSError *__autoreleasing *)error;

- (NSData *)contentsAtPath:

(NSString *)path;

- (BOOL)secureContentsEqualAtPath:

(NSString *)path1

andPath:(NSString *)path2

error:(

NSError *__autoreleasing *)error;

- (BOOL)contentsEqualAtPath:

(NSString *)path1

andPath:(NSString *)path2;

- (NSDictionary *)

attributesOfSecureFileAtPath:

(NSString *)path

error:(

NSError *__autoreleasing *)error;

- (NSDictionary *)

attributesOfItemAtPath:

(NSString *)path

error:(NSError **)error;

TABLE 24. NSFILEMANAGER CATEGORY METHODS (CONT.)

Example:

The following example shows how to move a secure file to a new location. Specifically, the example:
1. Creates a secure file.
2. Writes the contents of the unsecured file /etc/group into the secure file.
3. Moves the secure file to a new location using the NSFileManager+ACSecureData category methods.

NOTE: For brevity, theexampledoes not includeerror handling.

- (void)NSFileManagerCategoryExample
{

NSError *error;

// Read the contents of /etc/group.
NSData *etcGroupData = [NSData dataWithContentsOfFile:@"/etc/group"];

// Create a secure file with the contents of /etc/group.
NSString *secureFileName = @"/tmp/secureFile";
[[NSFileManager defaultManager] createSecureFileAtPath:secureFileName

contents:etcGroupData attributes:nil];

// Move the newly created secure file to a new location.
// First, create the source and destination file URLs.
NSString *anotherSecureFileName = @"/tmp/anotherSecureFile";
NSURL *sourceURL = [NSURL fileURLWithPath:secureFileName];
NSURL *destinationURL = [NSURL fileURLWithPath:anotherSecureFileName];

// Move the secure file.

NSFileManager category

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 133

[[NSFileManager defaultManager] moveSecureFileAtURL:sourceURL
toURL:destinationURL error:&error];

// Note: The following line incorrectly moves a secure file.
// Mixing regular and secure file I/O on the same file can result
// in corrupted data.
// DO NOT USE.
// [[NSFileManager defaultManager] moveItemAtPath:sourceURL toPath:destinationURL

error:&error];
}

NSData (ACSecureFile) category

Use this category if you to encrypt the data that your app stores. If you want to share the encrypted data with
another AppConnect app, see NSData (ACSecureFile) category.

Each method in the NSData (ACSecureFile) category corresponds to a method in the NSData class, but
provides a secure version of the functionality. For more information about the functionality and usage, see
NSData in developer.apple.com.

NoteTheFollowing:
• The url parameter in the category methods must be a file URL, and point to a regular file.
• The category methods that return an NSError object set the properties on the object as described in NSError

objects that secure Objective-C methods return.
• MobileIron recommends that you only use the category methods that return an NSError object. However, to

be consistent with the NSData class, the category includes secure versions of NSData methods that do not
return an NSError object.

The following table shows each added method and its corresponding method in NSData.

Method in category Corresponding method in NSData

+ (id)dataWithContentsOfSecureFile:

(NSString *)path;

+ (id)dataWithContentsOfFile:

(NSString *)path;

+ (id)dataWithContentsOfSecureFile:

(NSString *)path

options:
(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

+ (id)dataWithContentsOfFile:

(NSString *)path

options:(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

+ (id)dataWithContentsOfSecureURL:

(NSURL *)url;

+ (id)dataWithContentsOfURL:

(NSURL *)url;

+ (id)dataWithContentsOfSecureURL: + (id)dataWithContentsOfURL:

TABLE 25. NSDATA (ACSECUREFILE) CATEGORY METHODS

NSData (ACSecureFile) category

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 134

Method in category Corresponding method in NSData

(NSURL *)url

options:
(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

(NSURL *)url

options:(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

- (id)initWithContentsOfSecureFile:

(NSString *)path;

- (id)initWithContentsOfFile:

(NSString *)path;

- (id)initWithContentsOfSecureFile:

(NSString *)path

options:
(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

- (id)initWithContentsOfFile:

(NSString *)path

options:(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

- (id)initWithContentsOfSecureURL:

(NSURL *)url;

- (id)initWithContentsOfURL:

(NSURL *)url;

- (id)initWithContentsOfSecureURL:

(NSURL *)url

options:
(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

- (id)initWithContentsOfURL:

(NSURL *)url

options:(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

- (BOOL)writeToSecureFile:

(NSString *)path

atomically:(BOOL)flag;

- (BOOL)writeToFile:

(NSString *)path

atomically:(BOOL)flag;

- (BOOL)writeToSecureFile:

(NSString *)path

options:
(NSDataWritingOptions)mask

error:(NSError **)errorPtr;

- (BOOL)writeToFile:

(NSString *)path

options:(NSDataWritingOptions)mask

error:(NSError **)errorPtr;

- (BOOL)writeToSecureURL:

(NSURL *)aURL

atomically:(BOOL)atomically;

- (BOOL)writeToURL:

(NSURL *)aURL

atomically:(BOOL)atomically;

- (BOOL)writeToSecureURL:

(NSURL *)aURL

options:
(NSDataWritingOptions)mask

error:(NSError **)errorPtr;

- (BOOL)writeToURL:

(NSURL *)aURL

options:(NSDataWritingOptions)mask

error:(NSError **)errorPtr;

TABLE 25. NSDATA (ACSECUREFILE) CATEGORY METHODS (CONT.)

NSData (ACSecureFile) category

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 135

Example:

The following example shows how to use NSData category methods to:
1. Create a secure file and write data to it.
2. Read the contents of the secure file.

NOTE: For brevity, theexampledoes not includeerror handling.

- (void)NSDataCategoryExample
{

NSError *error;

// Read the contents of /etc/group.
NSData *etcGroupData = [NSData dataWithContentsOfFile:@"/etc/group"];

// Write the contents of /etc/group to a secure file.
NSString *secureFileName = @"/tmp/group.sec";
[etcGroupData writeToSecureFile:secureFileName options:0 error:&error];

// Read the contents of the secure file.
NSData *secureFileData =

[NSData dataWithContentsOfSecureFile:secureFileName options:0 error:&error];

// Note: The contents of NSData objects 'secureFileData' and 'etcGroupData'
// are identical.

}

NSData (ACSharedSecureFile) and ACFileHandle (ACSharedSecureFile) categories

Use these categories if you want to encrypt the data that your app stores and you want the app to share the data
with another AppConnect app. An encryption group ID determines which apps can share encrypted data. Each
method in these categories corresponds to a method in NSData or NSFileHandle, and includes an encryption
group ID parameter. The methods use the encryption group ID when encrypting and decrypting data. Therefore,
any app using the same encryption group ID can share the encrypted data.

NoteTheFollowing:
• If you do not want to share the data with another AppConnect app, use NSData (ACSharedSecureFile) and

ACFileHandle (ACSharedSecureFile) categories and NSData (ACSharedSecureFile) and ACFileHandle
(ACSharedSecureFile) categories.

• If you want to share data from a Document View Controller extension to a host app, see Sharing secure files
from an extension.

Your app receives the encryption group ID in its app-specific configuration key-value pairs. Therefore, to use
these categories, do the following:
1. Define the encryption group ID key name that your app expects to receive in its app-specific configuration.

For example: com.sample.groupID

The number of characters in the key name is not limited.

NSData (ACSharedSecureFile) andACFileHandle (ACSharedSecureFile) categories

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 136

2. Include information about the key in your documentation for MobileIron server administrators. The
information includes:
- The name of the key
- The other AppConnect apps that are sharing the encrypted data

Each of these other AppConnect apps also do these steps.
3. Handle receiving app-specific configuration as described in App-specific configuration API details .
4. Use the value of the encryption group ID key received in the app-specific configuration in the methods of

these categories.

NoteTheFollowing:
• The url parameter in these categories’ methods must be a file URL, and point to a regular file.
• The categories’ methods that return an NSError object set the properties on the object as described in

NSError objects that secure Objective-C methods return.
• MobileIron recommends that you only use the methods that return an NSError object. However, to be

consistent with the NSData and NSFileHandle classes, these categories include secure versions of NSData
and ACFileHandle methods that do not return an NSError object.

The following table shows each added method for NSData(ACSharedSecureFile) and its corresponding method
in NSData.

Method in category Corresponding method in NSData

+ (id)dataWithContentsOfSecureFile:

(NSString *)path

encryptionGroupId:(NSString
*)groupId;

+ (id)dataWithContentsOfFile:

(NSString *)path;

+ (id)dataWithContentsOfSecureFile:

(NSString *)path

encryptionGroupId:(NSString *)groupId

options:(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

+ (id)dataWithContentsOfFile:

(NSString *)path

options:(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

+ (id)dataWithContentsOfSecureURL:

(NSURL *)url

encryptionGroupId:(NSString
*)groupId;

+ (id)dataWithContentsOfURL:

(NSURL *)url;

+ (id)dataWithContentsOfSecureURL:

(NSURL *)url

encryptionGroupId:(NSString *)groupId

options:(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

+ (id)dataWithContentsOfURL:

(NSURL *)url

options:(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

- (id)initWithContentsOfSecureFile:

(NSString *)path

- (id)initWithContentsOfFile:

(NSString *)path;

TABLE 26. NSDATA(ACSHAREDSECUREFILE) CATEGORY METHODS

NSData (ACSharedSecureFile) andACFileHandle (ACSharedSecureFile) categories

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 137

Method in category Corresponding method in NSData

encryptionGroupId:(NSString
*)groupId;

- (id)initWithContentsOfSecureFile:

(NSString *)path

encryptionGroupId:(NSString *)groupId

options:(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

- (id)initWithContentsOfFile:

(NSString *)path

options:(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

- (id)initWithContentsOfSecureURL:

(NSURL *)url

encryptionGroupId:(NSString
*)groupId;

- (id)initWithContentsOfURL:

(NSURL *)url;

- (id)initWithContentsOfSecureURL:

(NSURL *)url

encryptionGroupId:(NSString *)groupId

options:(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

- (id)initWithContentsOfURL:

(NSURL *)url

options:(NSDataReadingOptions)mask

error:(NSError **)errorPtr;

- (BOOL)writeToSecureFile:

(NSString *)path

encryptionGroupId:(NSString *)groupId

atomically:(BOOL)flag;

- (BOOL)writeToFile:

(NSString *)path

atomically:(BOOL)flag;

- (BOOL)writeToSecureFile:

(NSString *)path

encryptionGroupId:(NSString *)groupId

options:(NSDataWritingOptions)mask

error:(NSError **)errorPtr;

- (BOOL)writeToFile:

(NSString *)path

options:(NSDataWritingOptions)mask

error:(NSError **)errorPtr;

- (BOOL)writeToSecureURL:

(NSURL *)aURL

encryptionGroupId:(NSString *)groupId

atomically:(BOOL)atomically;

- (BOOL)writeToURL:

(NSURL *)aURL

atomically:(BOOL)atomically;

- (BOOL)writeToSecureURL:

(NSURL *)aURL

encryptionGroupId:(NSString *)groupId

options:(NSDataWritingOptions)mask

error:(NSError **)errorPtr;

- (BOOL)writeToURL:

(NSURL *)aURL

options:(NSDataWritingOptions)mask

error:(NSError **)errorPtr;

TABLE 26. NSDATA(ACSHAREDSECUREFILE) CATEGORY METHODS (CONT.)

Example using NSData(ACSharedSecureFile) category methods:

NSData (ACSharedSecureFile) andACFileHandle (ACSharedSecureFile) categories

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 138

The following example shows how to use NSData(ACSharedSecureFile) category methods to:
1. Create a shared secure file and write data to it.
2. Read the contents of the secure file.

NOTE: For brevity, theexampledoes not includeerror handling.

- (void)NSDataSharedCategoryExample
{

NSError *error;

// This example assumes the app has already:
// 1. Retrieved the encryption group Id value from the config property on
// the AppConnect object.
// 2. Stored the value in an NSString * property named groupId of the current object.

// Read the contents of /etc/group.
NSData *etcGroupData = [NSData dataWithContentsOfFile:@"/etc/group"];

// Write the contents of /etc/group to a secure file to be shared with
// another AppConnect app.
NSString *secureFileName = @"/tmp/group.sec";
[etcGroupData writeToSecureFile:secureFileName

encryptionGroupId:self.groupId
options:0 error:&error];

// Read the contents of the secure file.
NSData *secureFileData =

[NSData dataWithContentsOfSecureFile:secureFileName
encryptionGroupId:self.groupId
options:0 error:&error];

// Note: The contents of NSData objects 'secureFileData' and 'etcGroupData'
// are identical.

}

Example using ACFileHandle(ACSharedSecureFile) category methods:

The following example shows how to use ACFileHandle(ACSharedSecureFile) category methods to:
1. Create a shared secure file and write data to it.
2. Read the encrypted contents of the secure file, decrypt the contents, and write it to a unsecured file.

NOTE: For brevity, theexampledoes not includeerror handling.

- (void)ACFileHandleSharedCategoryExample
{

NSError *error;

// This example assumes the app has already:
// - Retrieved the encryption group Id value from the config property on
// the AppConnect object.
// - Stored the value in an NSString * property named groupId of the current object.
// - Stored URLs in NSString * properties destinationPathURL and decryptedURL

NSData (ACSharedSecureFile) andACFileHandle (ACSharedSecureFile) categories

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 139

// of the current object.

// Read the contents of /etc/group.
NSError *err;
NSFileHandle *sourceFileHandle =

[NSFileHandle fileHandleForReadingAtPath:@"/etc/group" error:&err];

// Get a file handle to a file to share with another AppConnect app.
ACFileHandle *destFileHandle =

[ACFileHandle fileHandleForWritingToURL:self.destinationPathURL
withEncryptionGroupId:self.groupID
error:&err];

//Read chunks and write them using the secure file handle.
NSData *data = nil;
while ((data = [sourceFileHandle readDataOfLength:1024]) && (data.length > 0)) {

[destFileHandle writeData:data error:&Serr];
NSLog(@"Wrote bytes (%@)", err.description);

}
[destFileHandle synchronizeFile];

// Read the contents of the secure file.
ACFileHandle *sharedEncryptedFileHandle =
[ACFileHandle fileHandleForReadingFromURL:self.destinationPathURL

withEncryptionGroupId:self.groupID
error:&err];

// Create an empty file.
[[NSFileManager defaultManager] createFileAtPath:self.decryptedURL.path

contents:nil
attributes:nil];

// Read the encrypted file, decrypt the data, and write it to an unencrypted file.
NSFileHandle *writeToFileHandle =

[NSFileHandle fileHandleForWritingAtPath:@"/etc/group-copy"];
NSData *decryptedData = nil;
while ((decryptedData = [sharedEncryptedFileHandle readDataOfLength:1024]) &&

(decryptedData.length > 0)) {
[writeToFileHandle writeData:decryptedData];

}
[writeToFileHandle synchronizeFile];
// Note: The contents of @"/etc/group" and @"/etc/group-copy" are identical.

}

NSKeyedArchiver category

Each method in the NSKeyedArchiver category corresponds to a method in the NSKeyedArchiver class, but
provides a secure version of the functionality. For more information about the functionality and usage, see
NSKeyedArchiver in developer.apple.com.

NOTE: Thecategorymethods returnanNSError object. Themethods set theproperties on theobjectas
described inNSError objects that secureObjective-Cmethods return.

NSKeyedArchiver category

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 140

The following table shows each added method and its corresponding method in NSKeyedArchiver.

Method in category Corresponding method in
NSKeyedArchiver

+ (BOOL)archiveRootObject:

(id)rootObject

toSecureFile:(NSString *)path

error:(

NSError *__autoreleasing *)error;

+ (BOOL)archiveRootObject:

(id)rootObject

toFile:(NSString *)path;

+ (BOOL)archiveRootObject:

(id)rootObject

toSecureFile:(NSString *)path

atomically:(BOOL)atomically

error:(

NSError *__autoreleasing *)error;

+ (BOOL)archiveRootObject:

(id)rootObject

toFile:(NSString *)path

atomically:(BOOL)atomically;

TABLE 27. NSKEYEDARCHIVER CATEGORY METHODS

Example:

The following example shows how to use NSKeyedArchiver and NSKeyedUnarchiver category methods to:
1. Create a secure archive file and write data to it from a mutable dictionary.
2. Read the contents of the secure archive file into another mutable dictionary.

NOTE: For brevity, theexampledoes not includeerror handling.

- (void)NSKeyedArchiverCategoryExample
{

NSError *error;

// Create and populate a mutable dictionary.
NSMutableDictionary *dict = [NSMutableDictionary dictionary];

NSString *key1 = @"baseball";
NSString *value1 = @"white";
[dict setValue:value1 forKey:key1];

NSString *key2 = @"basketball";
NSString *value2 = @"orange";
[dict setValue:value2 forKey:key2];

// Archive the dictionary to a secure file.
NSString *archiveName = @"/tmp/secureArchive";

[NSKeyedArchiver archiveRootObject:dict toSecureFile:archiveName error:&error];

// Unarchive the secure file contents into another dictionary.
NSMutableDictionary *dictCopy = (NSMutableDictionary*)[NSKeyedUnarchiver

NSKeyedArchiver category

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 141

unarchiveObjectWithSecureFile:archiveName error:&error];

// Note: The contents of NSMutableDictionary objects 'dict' and 'dictCopy'
// are identical.

}

NSKeyedUnarchiver category

Each method in the NSKeyedUnarchiver category corresponds to a method in the NSKeyedUnarchiver class,
but provides a secure version of the functionality. For more information about the functionality and usage, see
NSKeyedUnarchiver in developer.apple.com.

NOTE: Thecategorymethod returns anNSError object. Themethods set theproperties on theobjectas
described inNSError objects that secureObjective-Cmethods return.

The following table shows each added method and its corresponding method in NSKeyedUnarchiver.

Method in category Corresponding method in
NSKeyedUnarchiver

+ (id)unarchiveObjectWithSecureFile:

(NSString *)path

error:(

NSError *__autoreleasing *)error;

+ (id)unarchiveObjectWithFile:

(NSString *)path;

TABLE 28. NSKEYEDUNARCHIVER CATEGORY METHODS

For a code example, see NSKeyedUnarchiver category.

NSDictionary category

Each method in the NSDictionary category corresponds to a method in the NSDictionary class, but provides a
secure version of the functionality. For more information about the functionality and usage, see NSDictionary in
developer.apple.com.

NoteTheFollowing:
• The url parameter in the category methods must be a file URL, and point to a regular file.
• The category methods return an NSError object. The methods set the properties on the object as described

in NSError objects that secure Objective-C methods return.

The following table shows each added method and its corresponding method in NSDictionary.

NSKeyedUnarchiver category

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 142

Method in category Corresponding method in
NSDictionary

dictionaryWithContentsOfSecureFile:

+ (id) (NSString *)path

error:(

NSError *__autoreleasing
*)error;

+
(id)dictionaryWithContentsOfFile:

(NSString *)path;

+ (id)

dictionaryWithContentsOfSecureURL:

(NSURL *)aURL

error:(

NSError *__autoreleasing
*)error;

+ (id)dictionaryWithContentsOfURL:

(NSURL *)aURL;

- (id)initWithContentsOfSecureFile:

(NSString *)path

error:(

NSError *__autoreleasing
*)error;

- (id)initWithContentsOfFile:

(NSString *)path;

- (id)initWithContentsOfSecureURL:

(NSURL *)aURL

error:(

NSError *__autoreleasing
*)error;

- (id)initWithContentsOfURL:

(NSURL *)aURL;

- (BOOL)writeToSecureFile:

(NSString *)path

atomically:(BOOL)flag

error:(

NSError *__autoreleasing
*)error;

- (BOOL)writeToFile:

(NSString *)path

atomically:(BOOL)flag;

- (BOOL)writeToSecureURL:

(NSURL *)aURL

atomically:(BOOL)flag

error:(

NSError *__autoreleasing
*)error;

- (BOOL)writeToURL:

(NSURL *)aURL

atomically:(BOOL)flag;

TABLE 29. NSDICTIONARY CATEGORY METHODS

Example:

The following example shows how to use NSDictionary and NSMutableDictionary category methods to:
1. Create a secure file and write data to it from a NSMutableDictionary object.

NSDictionary category

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 143

2. Read the contents of the secure file into an NSDictionary object.

NOTE: For brevity, theexampledoes not includeerror handling.

- (void)NSDictionaryCategoryExample
{

NSError *error;

// Create and populate a dictionary.
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:@"baseball",

@"white", @"basketball", @"orange", nil];

// Write the dictionary to a secure file.
NSString *secureFileName = @"/tmp/secureDictionary";
[dict writeToSecureFile:secureFileName atomically:TRUE error:&error];

// Create a dictionary with the contents of the secure file.
NSDictionary *dictCopy = [[NSDictionary alloc]

initWithContentsOfSecureFile:secureFileName error:&error];

// Note: The contents of objects 'dict' and 'dictCopy' are identical.
}

NSMutableDictionary category

Each method in the NSMutableDictionary category corresponds to a method in the NSMutableDictionary class,
but provides a secure version of the functionality. For more information about the functionality and usage, see
NSMutableDictionary in developer.apple.com.

NoteTheFollowing:
• The url parameter in the category methods must be a file URL, and point to a regular file.
• The category methods return an NSError object. The methods set the properties on the object as described

in NSError objects that secure Objective-C methods return.

The following table shows each added method and its corresponding method in NSMutableDictionary.

NSMutableDictionary category

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 144

Method in category Corresponding method in
NSMutableDictionary

+ (id)

dictionaryWithContentsOfSecureFile:

(NSString *)path

error:(

NSError *__autoreleasing
*)error;

+
(id)dictionaryWithContentsOfFile:

(NSString *)path;

+ (id)

dictionaryWithContentsOfSecureURL:

(NSURL *)aURL

error:(

NSError *__autoreleasing
*)error;

+ (id)dictionaryWithContentsOfURL:

(NSURL *)aURL;

- (id)initWithContentsOfSecureFile:

(NSString *)path

error:(

NSError *__autoreleasing
*)error;

- (id)initWithContentsOfFile:

(NSString *)path;

- (id)initWithContentsOfSecureURL:

(NSURL *)aURL

error:(

NSError *__autoreleasing
*)error;

- (id)initWithContentsOfURL:

(NSURL *)aURL;

- (BOOL)writeToSecureFile:

(NSString *)path

atomically:(BOOL)flag

error:(

NSError *__autoreleasing
*)error;

- (BOOL)writeToFile:

(NSString *)path

atomically:(BOOL)flag;

- (BOOL)writeToSecureURL:

(NSURL *)aURL

atomically:(BOOL)flag

error:(

NSError *__autoreleasing
*)error;

- (BOOL)writeToURL:

(NSURL *)aURL

atomically:(BOOL)flag;

TABLE 30. NSMUTABLEDICTIONARY CATEGORY METHODS

For a code example, see NSMutableDictionary category.

NSMutableDictionary category

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 145

NSArray category

Each method in the NSArray category corresponds to a method in the NSArray class, but provides a secure
version of the functionality. For more information about the functionality and usage, see NSArray in
developer.apple.com.

NoteTheFollowing:
• The url parameter in the category methods must be a file URL, and point to a regular file.
• The category methods return an NSError object. The methods set the properties on the object as described

in NSError objects that secure Objective-C methods return.

The following table shows each added method and its corresponding method in NSArray.

Method in category Corresponding method in
NSArray

+ (id)

arrayWithContentsOfSecureFile:

(NSString *)path

error:(

NSError *__autoreleasing *)error;

+ (id)arrayWithContentsOfFile:

(NSString *)path;

+ (id)

arrayWithContentsOfSecureURL:

(NSURL *)aURL

error:(

NSError *__autoreleasing *)error;

+ (id)arrayWithContentsOfURL:

(NSURL *)aURL;

- (id)initWithContentsOfSecureFile:

(NSString *)path

error:(

NSError *__autoreleasing *)error;

- (id)initWithContentsOfFile:

(NSString *)path;

TABLE 31. NSARRAY CATEGORY METHODS

NSArray category

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 146

Method in category Corresponding method in
NSArray

- (id)initWithContentsOfSecureURL:

(NSURL *)aURL

error:(

NSError *__autoreleasing *)error;

- (id)initWithContentsOfURL:

(NSURL *)aURL;

- (BOOL)writeToSecureFile:

(NSString *)path

atomically:(BOOL)flag

error:(

NSError *__autoreleasing *)error;

- (BOOL)writeToFile:

(NSString *)path

atomically:(BOOL)flag;

- (BOOL)writeToSecureURL:

(NSURL *)aURL

atomically:(BOOL)flag

error:(

NSError *__autoreleasing *)error;

- (BOOL)writeToURL:

(NSURL *)aURL

atomically:(BOOL)flag;

TABLE 31. NSARRAY CATEGORY METHODS (CONT.)

Example:

The following example shows how to use NSArray and NSMutableArray category methods to:
1. Create a secure file and write data to it from a NSMutableArray object.
2. Read the contents of the secure file into an NSArray object.

NOTE: For brevity, theexampledoes not includeerror handling.

- (void)NSArrayCategoryExample
{

NSError *error;

// Create an array and populate it.
NSArray *array = [NSArray arrayWithObjects:@"one fish", @"two fish", @"red fish",

@"blue fish", nil];

// Write the array to a secure file.
NSString *secureArrayFileName = @"/tmp/secureArray";
[array writeToSecureFile:secureArrayFileName atomically:TRUE error:&error];

// Create an array from the contents of the secure file.
NSArray *arrayCopy = [[NSArray alloc]

initWithContentsOfSecureFile:secureArrayFileName error:&error];

// The contents of the objects 'array' and 'arrayCopy' are identical.
}

NSArray category

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 147

NSMutableArray category

Each method in the NSMutableArray category corresponds to a method in the NSMutableArray class, but
provides a secure version of the functionality. For more information about the functionality and usage, see
NSMutableArray in developer.apple.com.

NoteTheFollowing:
• The url parameter in the category methods must be a file URL, and point to a regular file.
• The category methods return an NSError object. The methods set the properties on the object as described

in NSError objects that secure Objective-C methods return.

The following table shows each added method and its corresponding method in NSMutableArray.

Method in category Corresponding method in
NSMutableArray

+ (id)

arrayWithContentsOfSecureFile:

(NSString *)path

error:(

NSError *__autoreleasing *)error;

+ (id)arrayWithContentsOfFile:

(NSString *)path;

+ (id)

arrayWithContentsOfSecureURL:

(NSURL *)aURL

error:(

NSError *__autoreleasing *)error;

+ (id)arrayWithContentsOfURL:

(NSURL *)aURL;

- (id)initWithContentsOfSecureFile:

(NSString *)path

error:(

NSError *__autoreleasing *)error;

- (id)initWithContentsOfFile:

(NSString *)path;

TABLE 32. NSMUTABLEARRAY CATEGORY METHODS

NSMutableArray category

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 148

Method in category Corresponding method in
NSMutableArray

- (id)initWithContentsOfSecureURL:

(NSURL *)aURL

error:(

NSError *__autoreleasing *)error;

- (id)initWithContentsOfURL:

(NSURL *)aURL;

- (BOOL)writeToSecureFile:

(NSString *)path

atomically:(BOOL)flag

error:(

NSError *__autoreleasing *)error;

- (BOOL)writeToFile:

(NSString *)path

atomically:(BOOL)flag;

- (BOOL)writeToSecureURL:

(NSURL *)aURL

atomically:(BOOL)flag

error:(

NSError *__autoreleasing *)error;

- (BOOL)writeToURL:

(NSURL *)aURL

atomically:(BOOL)flag;

TABLE 32. NSMUTABLEARRAY CATEGORY METHODS (CONT.)

For a code example, see NSMutableArray category.

NSError objects that secure Objective-C methods return

Some of the ACFileHandle secure methods and some of the category methods take a pointer to an NSError
object as a parameter. These methods can set the domain and code properties on the NSError object to:
• the domain NSPOSIXErrorDomain, with the code property set to errno values.
• other domains, such as NSCocoaErrorDomain. The possible values of the code property are the same as

regular Objective-C methods.
• the domain ACErrorDomain, defined in ACError.h. The possible values of the code property are defined in

the enumeration in ACError.h. These values are the same values returned by the ACSecureFileLastError()
method.
Of particular interest when working with secure file I/O APIs are the errors ACE_NO_KEYS_ERROR and ACE_BAD_
KEY_OR_CORRUPT_DATA_ERROR. These errors indicate an encryption failure.
For more information, see NSError objects that secure Objective-C methods return.

Objective-C example

The following example shows how to check the NSError object returned in a secure write method:

- (void)errorHandlingExample
{

// Create data to be securely stored.
NSData *data = [@"secret data" dataUsingEncoding:NSASCIIStringEncoding];

// Set up a couple of data writing options.

NSError objects that secureObjective-Cmethods return

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 149

NSDataWritingOptions options = NSDataWritingAtomic | NSDataWritingFileProtectionComplete;

NSString *secureFilename = @"/tmp/data.sec";
NSError *error;

if (! [data writeToSecureFile:secureFilename options:options error:&error]) {

if ([[error domain] isEqualToString:ACErrorDomain] &&
[error code] == ACE_NO_KEYS_ERROR) {

// Provide logic to handle the situation when
// the encryption key is not available.

}
}

}

Swift example

The following example shows how to check the NSError object returned in a secure write method:

func errorHandlingExample() {

// Create data to be securely stored.
let data = "secret data".data(using: .ascii)! as NSData

// Set up a couple of data writing options.
let options: NSData.WritingOptions = [.atomic, .completeFileProtection]

let secureFilename = "/tmp/data.sec"

do {
try data.write(toSecureFile: secureFilename, options: options)

}

catch(let error as NSError) {

if (error.domain == ACErrorDomain && error.code == ACErrorNoKeys) {

// Provide logic to handle the situation when
// the encryption key is not available.

}
}

}

Sharing secure files from an extension
An AppConnect app can provide an app extension, specifically a Document View Controller extension, to share
secure files with other AppConnect apps. A file can be shared with all AppConnect apps or with only specific
AppConnect apps.

NOTE: To share secure files betweenAppConnectapps, see Secure file I/OAPI details.

Sharing secure files froman extension

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 150

Sharing secure documents from an extension requires the following tasks:

l Setting up the MobileIron server for sharing files from an extension
l Setting up the provider app’s Info.plist
l Coding the provider app to share secure files with its extension
l Coding the extension to share files with the host app
l Coding the host app to access the shared file

The sample app SwiftFileSharing illustrates coding these tasks in Swift.

Setting up the MobileIron server for sharing files from an extension

If you want your AppConnect app’s extension to share secure files with other AppConnect apps, define values
for the keys MI_AC_SHARED_GROUP_ID and MI_AC_ACCESS_CONTROL_ID. In the documentation that
you provide to the MobileIron server administrator about your AppConnect, include:

l the values you define
l the AppConnect apps that you want to use your extension to access the secure files

The server administrator sets the key-value pairs in the app configuration of your app and each AppConnect app
that is to share the secure files. If the server administrator does not set MI_AC_SHARED_GROUP_ID, then all
AppConnect apps can access the shared secure files.

NOTE: In theMobileIronCoreAdmin Portal, app key-valuepairs are set up in Policy & Configs >
Configurations, in theApp-specific Configurations sectionof anAppConnect App
Configuration. In theMobileIronCloudAdminPortal, the key-valuepairs are set up in the
AppConnectCustomConfiguration sectionof theapp.

Setting up the provider app’s Info.plist

For a provider app to share secure files through its extension, do the following:

1. Include the following key-value pairs in the app’s Info.plist:

l MI_APP_CONNECT
This key is the root key, and its value is a dictionary of key-value pairs

l MI_AC_KEYCHAIN_ACCESS_GROUP
This key provides a keychain access group that the AppConnect library uses to share secure files
between the provider app and its extension. The value is the app’s identifier prefix followed by a
string you define.
For example:

Setting up theMobileIron server for sharing files froman extension

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 151

2. In the Xcode project, in Capabilities > Keychain Sharing, add the string you defined. In this example,
the string to add is com.mycompany.MyACSharedFiles.

Coding the provider app to share secure files with its extension

The following sample code illustrates the AppConnect APIs that the provider app uses to share secure files with
its extension. The sample code is followed by a table of the tasks involved.

// When the AppConnect isReady notification is triggered, enable extension support.
-(void)appConnectIsReady:(AppConnect *)appConnect {

[[AppConnect sharedInstance] enableAppExtensionSupport];
}

// Insert code to use the read-only config property on the AppConnect singleton to
// get the MI_AC_SHARED_GROUP_ID key-value pair, if available.

// In this example, the key-value pair was not included, so nil
// is passed to -getCryptoKeysForACFileEncryptionWithSharedGroupID:error: for the group ID.

// When secure services are available, create an encryption key for encrypting secure files.

-(void)appConnect:(AppConnect *)appConnect
secureServicesAvailabilityChangedTo:(ACSecureServicesAvailability)secureServicesAvailability {

if (secureServicesAvailability == ACSECURESERVICESAVAILABILITY_AVAILABLE) {
NSData *secureKeyData =

[ACWrappedAppKey getCryptoKeysForACFileEncryptionWithSharedGroupID:nil error:nil];

// The secureKeyData object contains the encryption key.
// Store the secureKeyData object in a shared keychain that the extension
// can access.

}
}

Coding the provider app to share secure files with its extension

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 152

Task AppConnect APIs

1. Enable extension
support.

Call the -enableAppExtensionSupport:method on the AppConnect singleton
object.

Header
• AppConnectInterface.h

2. Get the value of
the MI_AC_
SHARED_
GROUP_ID key-
value pair.

Use the read-only config property on the AppConnect singleton to get the MI_AC_
SHARED_GROUP_ID key-value pair, if available.

Related topics and header files
• App-specific configuration API details
• AppConnectInterface.h

3. Make sure secure
services are
available.

Check if the secureServicesAvailability property on the AppConnect singleton
has the value ACSECURESERVICESAVAILABILITY_AVAILABLE.

Continue only if secure services are available

Related topics and header files
• Secure services API details
• AppConnectInterface.h

TABLE 33. CODING THE PROVIDER APP TO SHARE SECURE FILES WITH ITS EXTENSION

Coding the provider app to share secure files with its extension

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 153

Task AppConnect APIs

4. Create an
encryption key for
encrypting shared
files.

Method

+(NSData *)
getCryptoKeysForACFileEncryptionWithSharedGroupID:(NSString *)groupID

error:(NSError *_autoreleasing *)error;

Parameters
• groupID

Pass the value of the MI_AC_SHARED_GROUP_ID key-value pair. If this key-
value pair is not available, pass nil. Passing nilmeans that all AppConnect
apps can decrypt the shared file.

• error
If the method fails to create an encryption key, error is set to the appropriate
NSError object.

Return value
• NSData object containing key used for shared file encryption

Header file

• ACWrappedAppKey.h

5. Store the returned
encryption key in
a shared keychain
item used by the
provider app and
its extension.

TABLE 33. CODING THE PROVIDER APP TO SHARE SECURE FILES WITH ITS EXTENSION (CONT.)

Coding the extension to share files with the host app

The following sample code illustrates what the Document View Controller extension does to share secure files
with a host app. The sample code is followed by a table of the tasks involved.

// Add the following ExtensionManager class to your extension code. Your extension will
// create a singleton instance of the class, which takes care of all the
// AppConnect-related operations.

@class ExtensionManager;

@protocol ExtensionManagerProtocol
-(void)extensionManager:(ExtensionManager *)extensionManager

appConnectAccessControlStateDeterminedAs:(ACExtensionAccessState)state;
@end

@interface ExtensionManager: NSObject <AppConnectExtensionInterfaceProtocol>
@property (weak) AppConnectExtensionInterface *acInterface;

Coding the extension to share files with the host app

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 154

@property (weak) id<ExtensionManagerProtocol> delegate;
@end

@implementation ExtensionManager

+(instancetype)sharedInstance {
static ExtensionManager *sharedInstance = nil;
static dispatch_once_t onceToken;
dispatch_once(&onceToken, ^{

sharedInstance = [[ExtensionManager alloc] init];
sharedInstance.acInterface = [AppConnectExtensionInterface appConnectExtensionInstance];
sharedInstance.acInterface.delegate = sharedInstance;

});
return sharedInstance;

}

-(void)requestAccessControlState {
// Initiate a process that determines whether the host app is allowed to
// access the extension.
[self.acInterface determineAccessControlState];

}

-(void)appConnectAccessControlStateDeterminedAs:(ACExtensionAccessState)state {
[self.delegate extensionManager:self appConnectAccessControlStateDeterminedAs:state];

}

@end

//
//
// In your UIDocumentPickerExtensionViewController implementation, include the following code:
//
//

-(void)prepareForPresentationInMode:(UIDocumentPickerMode)mode {

// Insert code to present a view controller appropriate for the picker mode.
// Then...

switch (mode) {
case UIDocumentPickerModeOpen:
case UIDocumentPickerModeImport:

ExtensionManager *extensionManager = [ExtensionManager sharedInstance];
[extensionManager setDelegate:self];
[extensionManager requestAccessControlState];

// Start a spinner while waiting to find out if the host app is allowed
// to access the extension.
[_spinner startAnimating];

}

Coding the extension to share files with the host app

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 155

}

//
//
// Your UIDocumentPickerExtensionViewController class implements
// the ExtensionManagerProtocol.
//

-(void)extensionManager:(ExtensionManager *)extensionManager
appConnectAccessControlStateDeterminedAs:(ACExtensionAccessState)state {

currentState = state;
[_spinner stopAnimating];

switch (currentState) {

case ACExtensionAccessStateNoRequest:
// A non-AppConnect App has launched the extension.
// Do not share the file. Take necessary steps, such as notifying the user.
break;

case ACExtensionAccessStateNotEnabled:
// Either the administrator did not configure MI_AC_ACCESS_CONTROL_ID for
// the provider app, or the provider app has not setup access control by
// calling -enableAppExtensionSupport:.
// Do not share the file. Take necessary steps, such as notifying the user.
break;

case ACExtensionAccessStateBlocked:
// The host app does not have access to this extension. It does not have
// the same MI_AC_ACCESS_CONTROL_ID as the provider app.
// Do not share the file. Take necessary steps, such as notifying the user.
break;

case ACExtensionAccessStateNotBlocked:
// Share the wrapped file. An AppConnect app has launched the extension.
break;

}
}

Coding the extension to share files with the host app

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 156

Task AppConnect APIs and sample code

1. Define an ExtensionManager class that is
derived from NSObject and implements the
AppConnectExtensionInterfaceProtocol.

The sample code provides a full implementation of an
ExtensionManager class that you can use.

It includes the implementation of:
• the AppConnectExtensionInterface method:
-(BOOL) determineAccessControlState;

• the AppConnectExtensionInterfaceProtocol callback
method:

-(void) appConnectAccessControlStateDeterminedAs:
(ACExtensionAccessState)state;

Header file
• AppConnectExtensionInterface.h in the

AppConnectExtension.framework

2. Your
UIDocumentPickerExtensionViewController
class implements the
ExtensionManagerProtocol.

The sample code explains the handling of each
ACExtensionAccessState value in the
ExtensionManagerProtocol callback method. The app
continues to file sharing processing only if the value is
ACExtensionAccessStateNotBlocked.

3. Your
UIDocumentPickerExtensionViewController
object does the following:
- Creates a singleton instance of the

ExtensionManager class.
- Sets the ExtensionManager’s delegate so

that you can receive the callback.
- Initiates the request to determine if the

host app is allowed to use the extension.

The sample code shows this sequence in
-prepareForPresentationInMode:.

TABLE 34. CODING THEDOCUMENTVIEWCONTROLLER EXTENSION TO SHARE FILES WITH THE HOST APP

Coding the extension to share files with the host app

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 157

Task AppConnect APIs and sample code

4. When the ExtensionManagerProtocol
callback method is called with state set to
ACExtensionAccessStateNotBlocked, read
the encryption key stored as an NSData
object in the shared keychain item.

5. Wrap the selected file using the encryption
key.

Method

+(BOOL)wrapFileAtPath:(NSString *)path
toPath:(NSString *)toPath

withCryptoBlock:(NSData *)cryptoBlock
actualFileName:(NSString *fileName)
error:(NSError *_autoreleasing *)error;

Parameters
• path

Pass the file URL of the selected file.
• toPath

Pass the file URL of where the resulting wrapped file
should be stored.

• cryptoBlock
Pass the NSData object containing the encryption
key.

• actualFileName
Optional. File name for the wrapped file, if it should
be different than the original file name.

• error
If the method fails, error is set to the appropriate
NSError object.

Return value
• YES if successful. Otherwise NO.

Header file
• ACWrappedFile.h in the AppConnectExtension

framework

TABLE 34. CODING THEDOCUMENTVIEWCONTROLLER EXTENSION TO SHARE FILES WITH THE HOST APP
(CONT.)

Coding the host app to access the shared file

The following sample code illustrates what the host app does to access the secure file shared by the extension.
The sample code is followed by a table of the tasks and header files involved.

// Insert code to use the read-only config property on the AppConnect singleton to
// get the MI_AC_SHARED_GROUP_ID key-value pair, if available.
// In this example, the key-value pair was not included. Therefore, nil

Coding the host app to access the shared file

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 158

// is passed for the group ID parameter to -readWrappedFileAtPath:sharedGroupID:error:,
// which gets the file handle of the shared, wrapped file.

-(NSURL *)getDecryptedFileURL:(NSURL *)url {

ACWrappedFileReadHandle *readHandle = [ACUnwrappedFile readWrappedFileAtPath:url.path
sharedGroupID:nil error:&error];

if (readHandle) {

NSFileHandle *writeToFileHandle =
[NSFileHandle fileHandleForWritingAtPath:decURL.path];

// Decrypt the file by reading it with the ACWrappedFileReadHandle object.
// This snippet then writes it to an unencrypted file.

NSData *decryptedData = nil;
while ((decryptedData =

[readHandle readDataOfLength:1024]) && (decryptedData.length > 0)) {

[writeToFileHandle writeData:decryptedData];
}

[writeToFileHandle synchronizeFile];
[writeToFileHandle closeFile];

// You can remove the wrapped file after decrypting it.
[[NSFileManager defaultManager] removeItemAtURL:url error:nil];
return decURL;

}
else if (error && error.code == ACWrappedFileReadErrorUnknownWrapperFormat) {

// The file is not wrapped. It is not from an AppConnect app’s extension.
// It can be used directly.
return url;

}
}

Coding the host app to access the shared file

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 159

Task AppConnect APIs

1. Get the value of the
MI_AC_SHARED_
GROUP_ID key-
value pair.

Use the read-only config property on the AppConnect singleton to get the MI_AC_
SHARED_GROUP_ID key-value pair, if available.

Related topics and header files
• App-specific configuration API details
• AppConnectInterface.h

2. Get the file handle
of the shared,
wrapped file.

Method

+(ACWrappedFileReadHandle *) readWrappedFileAtPath:(NSString *)path
sharedGroupID:(NSString *)groupID
error:(NSError *__autoreleasing *)error;

Parameters
• path

Pass the file URL of the file returned from the extension.
• sharedGroupID

Pass the value of the MI_AC_SHARED_GROUP_ID key-value pair. If this key-
value pair is not available, pass nil.

• error
If the method fails, error is set to the appropriate NSError object.

Return value
• If successful, returns the file handle of the shared, wrapped file as a

ACWrappedFileReadHandle object. Otherwise, returns nil.

Header files
• ACUnwrappedFile.h in the AppConnect framework
• ACWrappedFileReadHandle.h in the AppConnect framework

3. Using the file
handle, read and
decrypt the file’s
contents.

Methods

Use the methods in ACFlleHandle.h to read and decrypt the file’s contents.

TABLE 35. CODING THE HOST APP TO ACCESS THE SHARED FILE

AppTunnel diagnostic API details
The AppTunnel diagnostic API provides troubleshooting information for an app’s use of AppTunnel with HTTP/S
tunneling. Typically, you add a user interface, such as a menu item, to invoke a diagnostic run for tunneling to a
specified URL. Your app then displays or logs the results of the diagnostic run. The MobileIron server
administrator uses the results to troubleshoot AppTunnel configuration for the app.

NOTE: AnAppTunnel diagnosticAPI is alsoavailable for Xamarinprojects. See "How to include the
XamarinC#binding in your Xamarinproject" inDevelopingAppConnectappswith Xamarin .

AppTunnel diagnostic API details

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 160

The AppTunnel diagnostic API provides the following AppTunnel information:
• Whether the device received any AppTunnel rules
• Whether the URL requested matched an AppTunnel rule
• Whether a valid pinned Standalone Sentry server certificate is available for tunneling. This is the certificate

that devices use to know that the Sentry used for AppTunnel is a trusted server.
• Whether a valid client identity is available. This client identity is used to authenticate the app to the Sentry.
• Whether the Sentry is reachable
• The HTTP/S status code returned from the backend server
• Whether AppTunnel is blocked
• Whether the device received data from the backend server
• Whether the backend server redirected the URL request
• Whether the backend server issued an authentication challenge

The API is defined in the Networking category of the AppConnect interface, in the header file
AppConnect+Networking.h.

Running an AppTunnel diagnostic

To run an AppTunnel diagnostic, use the following method:

-(NSInteger)diagnoseTunnelingForURL:(NSURL *)url
resultHandler:(void (^)(ACTunnelingDiagnosticResult *result,

NSInteger runID)) resultHandler;

The method -diagnoseTunnelingForURL:resultHandler: makes successive calls to the resulthandler block as
it progresses through the diagnostic run for the specified URL. Each call to the resulthandler block contains
information about processing the URL for tunneling. When the diagnostic run is complete, -
diagnoseTunnelingForURL:resultHandler: makes a final call to the resulthandler block, passing it nil for the
result.

IMPORTANT: TheURL requestmust haveno sideeffects, suchasmodifyingdataon the server. This
requirement is because if theURL request is successful, thedestination server receives the
request, but your appdoes not receive the response.

For example, the following code snippets (one for Objective-C and one for Swift):
• Passes a URL from a text field.
• Passes an in-line block to log the results of the diagnostic run.

Objective-C example

[[AppConnect sharedInstance] diagnoseTunnelingForURL:
[NSURL URLWithString:self.urlField.text]
resultHandler:^(ACTunnelingDiagnosticResult *result, NSInteger runID) {

if (result) {
NSLog(@"Diagnostic run %I result %@: %@", runID,

result.successful?@"Success":@"FAILURE",
result.resultDescription);

 } else {

Running anAppTunnel diagnostic

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 161

NSLog(@"Diagnostic run %@I ended", runID);
 }

 }];

Swift example

AppConnect.sharedInstance()?.diagnoseTunneling (
for: URL(string: self.urlField.text)!,

resultHandler: { (result, runID) in

if (nil != result) {

print("Diagnostic run \(runID) result \(result!.isSuccessful ? "Success" :
"FAILURE"): \(result!.description)")

}
else {

print("Diagnostic run \(runID) ended")
}

}
)

}

For more information, continue to:
• -diagnoseTunnelingForURL:resultHandler: parameters
• -diagnoseTunnelingForURL:resultHandler: return value
• The result handler for diagnostic runs
• The ACTunnelingDiagnosticResult class
• The ACTunnelingDiagnosticResultCode enumeration
• AppTunnel configuration troubleshooting checklist for MobileIron Core

-diagnoseTunnelingForURL:resultHandler: parameters

The following table describes the parameters that you pass to
-diagnoseTunnelingForURL:resultHandler:.

Parameter Description

url An NSURL object specifying the URL to diagnose.

resultHandler A callback block that you define. It is called successive times with each result as the
diagnostic run progresses.

TABLE 36. PARAMETERS PASSED TO -DIAGNOSETUNNELINGFORURL:RESULTHANDLER

-diagnoseTunnelingForURL:resultHandler: return value

The method -diagnoseTunnelingForURL:resultHandler: returns an NSInteger value. The value is the same as
the value of the runID parameter returned to the resulthandler block. The runID is a unique number assigned by
each diagnostic run. The runID parameter is useful for distinguishing different runs of the AppTunnel diagnostic.

-diagnoseTunnelingForURL:resultHandler: parameters

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 162

For each call to -diagnoseTunnelingForURL:resultHandler:, you pass:
• a URL
• a resulthandler block

The runID associates the results passed back in the resulthandler block with the URL being diagnosed.

The result handler for diagnostic runs

In the resulthandler block, put the logic to handle the successive results of a diagnostic run. For example, log
the values of the properties of the result parameter.

The resulthandler block has the following parameters:

Parameter Description

result An ACTunnelingDiagnosticResult object returned with each callback to the result handler.

When the diagnostic run is complete, -diagnoseTunnelingForURL:resultHandler: makes a
final call to the resulthandler block, passing it nil for the result.

runID A variable to contain the ID that associates the returned result with a URL. The runID is a
unique number assigned by each diagnostic run. The runID parameter is useful for
distinguishing different runs of the AppTunnel diagnostic.

For each call to -diagnoseTunnelingForURL:resultHandler:, you pass:
• a URL
• a resulthandler block

The runID associates the results passed back in the resulthandler block with the URL being
diagnosed.

TABLE 37. RESULTHANDLER BLOCK PARAMETERS

The ACTunnelingDiagnosticResult class

The ACTunnelingDiagnosticResult class represents one of the results of a diagnostic run. The result handler
receives an instance of the ACTunnelingDiagnosticResult class.

The object has these properties:

The result handler for diagnostic runs

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 163

Property Description

resultCode A ACTunnelingDiagnosticResultCode value.

successful YES if the result was successful. Otherwise, NO.

timestamp An NSDate object containing the timestamp for when the result occurred.

resultDescription A description of the result.

Important: These descriptions are for readability only, and possibly will change in
future releases. Do not depend on these strings for programmatic decisions. Use the
resultCode.

TABLE 38. ACTUNNELINGDIAGNOSTICRESULT PROPERTIES

The ACTunnelingDiagnosticResultCode enumeration

The ACTunnelingDiagnosticResultCode enumeration values are returned in each result of a diagnostic run. Not
all values are returned with each run, and some values can be returned more than once in each run. For
example, if a URL request is redirected more than once, ACTDR_REDIRECT is returned more than once.

The enumeration values fall into these categories:

Category Description

Diagnostic run life cycle codes Status of diagnostic run’s progress.

Policy integrity codes Information about the AppTunnel policy data for the app on the device.

Certificate challenges codes Whether using the available certificates is successful.

Networking codes Whether the Standalone Sentry is reachable.

Connection result codes Information about the HTTP/S connection

TABLE 39. ACTUNNELINGDIAGNOSTICRESULTCODE ENUMERATION VALUES

The following table provides:
• the enumeration’s values
• a description of each value
• the values of the successful and resultDescription properties in the ACTunnelingDiagnosticResult

object.

IMPORTANT: These resultDescription stringsare for readability only, andpossiblywill change in future
releases. Donotdependon these strings for programmaticdecisions. Use the resultCode.

The ACTunnelingDiagnosticResultCode enumeration

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 164

Value Details

Diagnostic run life cycle codes

ACTDR_RUN_STARTED The run started properly.

successful: Always YES.

resultDescription:

Diagnostic run started. Requesting (URL)

ACTDR_REDIRECT The server redirected to a new URL.

successful: Always YES.

resultDescription:

Redirected by server to new URL (url)

ACTDR_COMPLETED Indicates whether the diagnostic run completed successfully.

successful: YES if completed without an error. Otherwise NO.

resultDescription:

Session completed normally

or

Session completed with error: (error)

ACTDR_ABORT_UNSUPPORTED_
AUTH

The diagnostic run ended because the server issued an authentication
challenge, such as basic authentication. This challenge is normally
handled by the app, so the diagnostic run cannot continue. Typically, if
the diagnostic run gets to this result, AppTunnel is working.

successful: Always YES.

resultDescription:

Server issued an auth challenge type that the diagnostic does not
support. Aborting the diagnostic and the auth challenge. Auth
challenge type is (auth type)

Policy integrity codes, evaluating AppTunnel policy information for the app on the device

ACTDR_RULE_MATCH Indicates whether the URL matches an AppTunnel rule. If the URL
redirects, another result with this code is returned for the redirection
URL.

successful: YES if matched. Otherwise NO.

resultDescription:

Request matches a tunneling rule so it will be tunneled.

or

Request does not match a tunneling rule so it will not be tunneled.

TABLE 40. ACTUNNELINGDIAGNOSTICRESULT OBJECT DESCRIPTIONS FOR EACH RESULT CODE

The ACTunnelingDiagnosticResultCode enumeration

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 165

Value Details

or

AppTunnel policy has no tunneling rules.

ACTDR_POLICY_SERVER_CERT Indicates whether a valid pinned Sentry certificate is available for
tunneling. This is the certificate that the AppConnect Library in the app
uses to know that the Sentry used for AppTunnel is a trusted server.

Note different Sentrys can provide tunneling for different URL requests.
Each Sentry has its own pinned certificate.

successful: YES if the certificate is valid. Otherwise NO.

resultDescription:

Server certificate in the AppTunnel policy is valid.

or

Server certificate in the AppTunnel policy is invalid. It may have
expired.

or

No server certificate was found in the AppTunnel policy.

ACTDR_POLICY_CLIENT_IDENTITY Indicates whether a valid client identity is available. This client identity
is used to authenticate the app to the Sentry.

successful: YES if the client identity is valid. Otherwise NO.

resultDescription:

Client identity in the AppTunnel policy appears to be valid.

or

Client certificate in the AppTunnel policy is invalid. It may have expired.

or

No client identity in the AppTunnel policy.

Certificate challenges codes, indicating whether using the certificates is successful

ACTDR_SEND_CLIENT_CERT Indicates whether the app successfully authenticated the app to the
Sentry using the available client identity.

successful: YES if authentication to the Sentry succeeded. Otherwise
NO.

resultDescription:

Authenticated with client identity

ACTDR_EVALUATE_SENTRY_CERT Indicates whether the Sentry passed evaluation using the pinned
Sentry certificate. This is the certificate that the AppConnect Library in
the app uses to know that the Sentry used for AppTunnel is a trusted

TABLE 40. ACTUNNELINGDIAGNOSTICRESULT OBJECT DESCRIPTIONS FOR EACH RESULT CODE (CONT.)

The ACTunnelingDiagnosticResultCode enumeration

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 166

Value Details

server.

successful: YES if the certificate is trusted. Otherwise NO.

resultDescription:

Server certificate passed all evaluation

or

Server certificate was not trusted. The trust result was (trust result)

Networking codes

ACTDR_DNSLOOKUP_SENTRY Indicates whether a DNS lookup for the Sentry has succeeded.

successful: YES if the lookup succeeded. Otherwise NO.

resultDescription:

DNS resolution of the Sentry <Sentry hostname> succeeded

or

DNS resolution of the Sentry <Sentry hostname> failed

TABLE 40. ACTUNNELINGDIAGNOSTICRESULT OBJECT DESCRIPTIONS FOR EACH RESULT CODE (CONT.)

The ACTunnelingDiagnosticResultCode enumeration

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 167

Value Details

Connection result codes

ACTDR_RESPONSE Indicates that the server returned an HTTP status code. The value of
the HTTP status code is in the resultDescription.

successful: YES for HTTP status codes 1xx, 2xx, or 3xx. NO for 4xx and
5xx.

resultDescription:

Received HTTP status code (code)

or

AppTunnel is blocked.

NoteTheFollowing:
• Some HTTP status codes are handled and consumed by iOS, and

therefore do not generate a callback to the result handler.
• Blocking AppTunnel blocks access to web sites configured to use

AppTunnel. The MobileIron administrator can block AppTunnel for
a device through a manual action or an automatic action triggered
by a security violation on the device.

ACTDR_RECEIVED_DATA Indicates that data was received from the backend server in the
HTTP/S response.

successful: Always YES.

resultDescription:

Received (bytes) bytes of data

NOTE: This result shows thebytesas theyare received, not the total
numberof bytes.

TABLE 40. ACTUNNELINGDIAGNOSTICRESULT OBJECT DESCRIPTIONS FOR EACH RESULT CODE (CONT.)

AppTunnel configuration troubleshooting checklist for MobileIron Core

If an app is not successfully tunneling to its app server, check the following in the MobileIron Core Admin Portal:

AppTunnel configuration troubleshooting checklist for MobileIronCore

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 168

Admin Portal location Troubleshooting actions

Settings >
Preferences

Under Additional Products, make sure you have enabled the appropriate
features.

Make sure you have selected Enable App Tunnel for third-party and in-house
apps, if you are using AppTunnel for any app besides Docs@Work.

Policies & Configs >
Policies

AppConnect global
policy

Check the AppConnect global policy configuration:
1. In the AppConnect field, make sure you have selected Enabled.
2. Make sure AppConnect global policy is applied to a label belonging to the

device. If you are using the default AppConnect global policy, this step is not
necessary.

3. If you do not create an AppConnect container policy for the app, select
Authorize for Apps without an AppConnect container policy.

Settings > Sentry Make sure the Standalone Sentry is configured with a certificate that devices use
to know that the Sentry used for AppTunnel is a trusted server.

To view the Sentry certificate in the Admin Portal for MobileIron Core.
1. Go to Settings > Sentry.
2. Find the line for the appropriate Sentry.
3. Click View Certificate.

Settings > Sentry Make sure the Standalone Sentry is configured for AppTunnel for the app:
1. Make sure Enable AppTunnel is selected.
2. In Device Authentication Configuration, make sure the correct, valid

Trusted Root Certificate is uploaded.
3. In AppTunnel Configuration, make sure you have configured the Services.

Policies & Configs >
Configurations

AppConnect container
policy

Check the AppConnect container policy for the app. Make sure it is applied to a
label belonging to the device.

You do not need an AppConnect container policy if the AppConnect global policy
selects Authorize for Apps without an AppConnect container policy.

Policies & Configs >
Configurations

AppConnect app
configuration

Check the AppConnect app configuration for the app:
1. Make sure the AppTunnel Rules point to the intended Sentry and service.
2. For Identity Certificate,make sure you have selected the correct certificate,

issued from the trusted root Certificate Authority indicated by the Trusted Root
Certificate uploaded to the Sentry.

3. Make sure the certificate has not expired and that its initial validity date is in the
past.

4. Make sure AppConnect app configuration is applied to a label belonging to the
device.

TABLE 41. APPTUNNEL CONFIGURATION TROUBLESHOOTING CHECKLIST FORMOBILEIRONCORE

AppTunnel configuration troubleshooting checklist for MobileIronCore

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 169

UIScene support
With iOS 13, Apple moved UIApplicationDelegate events handling to UISceneDelegate. To function properly,
AppConnect requires some of the events that are now handled by UIScene.

Therefore, if your app supports UIScene, when initializing the AppConnect library, call the AppConnect method
-sceneWillConnectToSessionWithOptions:.

The method must be called from UISceneDelegate's -scene:willConnectToSession:options:method. UIScene
connection options need to be passed as input parameter to the AppConnect instance method
-sceneWillConnectToSessionWithOptions:.

The method has the parameter options:. The value for the parameter is the value provided to [UISceneDelegate

scene:willConnectToSession:options:].

See also, Initialize the AppConnect libraryHow to initialize your Xamarin app to use AppConnect C# APIs.

UIScene support

6

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 170

Best practices for using the AppConnect for
iOS SDK

The following are best practices for developing secure enterprise apps:

l Display authorization status in the home screen
l Allow the user to enter credentials manually
l Use the AppConnectDelegate protocol for notifications
l Limit the size of configuration data from the MobileIron server
l Use the UIApplication’s delegate as you normally would
l Consider limitations when using the iOS simulator
l Enable the AppConnect library to blur screens when the app becomes inactive
l Do not put secure data in the app bundle
l Indicate to the user that the app is initializing
l Reject custom keyboard control
l Do not use UIWebView to upload sensitive data
l Provide documentation about your app to the MobileIron server administrator

Display authorization status in the home screen
When an app becomes unauthorized or retires, the authState property on the AppConnect object changes to
ACAUTHSTATE_UNAUTHORIZED or ACAUTHSTATE_RETIRED. Additionally, the authMessage property changes to a string
that explains to the device user why the app is unauthorized or retired. The string sometimes also explains what
the device user can do to make the app authorized again.

The app should display the authMessage string. However, consider that since the app is now unauthorized or
retired, the app must exit its secure functionality. Therefore, the best user experience is to display the string in a
home view that never contains secure information.

The following alternatives for displaying the authMessage string are not recommended:

l Do not display the string using UIAlertView on top of the current view. Beneath the message, the current
view can still have secure information visible.

l Do not use the -displayMessage:method. This method does not match the look of your app.
l Do not exit the app without displaying the string.

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 171

Allow the user to enter credentials manually
Always provide a way for a user to enter login credentials manually in your app. Provide this user interface even
if you are receiving login credentials in app-specific configuration information from the AppConnect library.

As described in Configuration specific to the app, a MobileIron server administrator can set up configuration
information for your app on the server. Your app receives the information using the AppConnect for iOS SDK.
This information can include authentication credentials, such as username, password and certificates, for a
corporate service. Because the app receives the information, the device user does not have to enter the
information.

However, if the credentials change, the amount of time for the change to reach your application can vary. Some
variables that impact this notification include:

l the app checkin interval that the administrator configured on the MobileIron server. This value is the
maximum number of minutes until devices running AppConnect apps receive updates of their
AppConnect policies and app-specific configurations.

l whether the device has network coverage.

Therefore, providing changes to devices is not a real-time process and can take up to several hours. Therefore, if
the corporate service rejects the credentials, provide a way for the user to enter the credentials manually.

Use the AppConnectDelegate protocol for notifications
Use methods of the AppConnectDelegate protocol to receive notifications of changes to:

l the authorization status and associated message.
l the permission status for copying content to the iOS pasteboard, using document interaction (Open In
and Open From), and print.

l app-specific configuration.

Do not use the iOS SDK’s key-value observing capabilities instead of AppConnectDelegate protocol
notifications.

Consider the following scenario in which the AppConnect library receives a new authorization status:

1. The authState property on the AppConnect object changes from ACAUTHSTATE_AUTHORIZED to
ACAUTHSTATE_UNAUTHORIZED.

2. The authMessage property on the AppConnect object changes from “The app is authorized.” to “The app
is not authorized because your device OS is compromised.”

3. The AppConnect library calls the -appConnect:authStateChangedTo:withMessagemethod on the
AppConnectDelegate.

Allow the user to enter credentials manually

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 172

Now consider what can happen if you use key-value observing on the authState property. When authState

changes, an application typically displays to the user the string in authMessage. Because the authMessage string
has not yet changed, the user sees the original message that “The app is authorized.” However, the app is no
longer authorized.

Using only the AppConnectDelegate’s callback methods avoids such inconsistencies.

Limit the size of configuration data from the MobileIron server
Do not design your app to use large amounts of configuration data from the MobileIron server.

As described in Configuration specific to the app, a MobileIron server administrator can set up configuration
information for your app on the server. Your app receives the information using the AppConnect for iOS SDK.
Use this capability only for short strings and options, such as server addresses, authentication credentials, and
certificates.

Do not use it for larger data items, such as documents, large blocks of HTML, or images. For large data items,
use a web service to deliver the items. Use AppConnect configuration only to provide the URL for the web
service.

Although no precise upper limit is defined for an item configured on the MobileIron server, a large item can
impact server performance. It can also slow connectivity between the server and the MobileIron client app. A
very large item can possibly cause the communication protocol between the MobileIron server and the
MobileIron client app to fail entirely.

Use the UIApplication’s delegate as you normally would
The AppConnect library depends on knowing about application life cycle events, such as when the application
becomes active. Requiring the app to pass every life cycle event to the AppConnect library would be too much of
a burden on the app. Therefore, the AppConnect library installs a UIApplicationDelegate proxy. This proxy sits
between the UIApplication and your application’s UIApplicationDelegate.

Your application does not do anything to support the proxy. Use your UIApplicationDelegate as you normally
would:

l The AppConnect library does not filter or modify any messages sent by iOS to the
UIApplicationDelegate.

l You can still add custom methods to your UIApplicationDelegate. Call the custom method as you
normally would, such as in the following statement:
[[UIApplication sharedApplication] delegate] customMethod];

The proxy passes the method invocation to your UIApplicationDelegate.

Limit the size of configuration data from theMobileIron server

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 173

l You can set a new UIApplicationDelegate as you normally would:
[[UIApplication sharedApplication] setDelegate:myOtherAppDelegate];

Until AppConnect 4.0 for iOS, the UIApplicationDelegate proxy caused side effects. Now these side effects do
not occur, The side effects of the proxy were:

l The following expression did not return your UIApplicationDelegate’s class:
[[[UIApplication sharedApplication] delegate] class]

Instead, it returned the proxy class.
Therefore, prior to AppConnect 4.0, using isKindofClass: was necessary. For example, the following
returned YES:
[[UIApplication sharedApplication] isKindOfClass:[MyAppDelegate class]]

l The following expression did not return your UIApplicationDelegate object:
[[UIApplication sharedApplication] delegate]

If you required access to your UIApplicationDelegate object, the AppConnectUIApplication class
provided a property called originalDelegate. Because this property is no longer necessary, it is
deprecated.
See AppConnectUIApplication class.

Consider limitations when using the iOS simulator
To fully test an AppConnect app, debug on a tethered device using Xcode, as you would for any other app. On a
device, your testing includes the MobileIron client app, which is necessary for the complete flow of data from the
MobileIron server to your app.

You can do initial functionality testing in the iOS simulator in Xcode. You can link against the AppConnect library
when building for the iOS simulator as you normally would.

However, when using the AppConnect library in the iOS simulator, the AppConnect library always sets the
properties on the AppConnect singleton as follows:

l the authState property is set to ACAUTHSTATE_AUTHORIZED

l the config property has no entries
l the pasteboard property is set to ACPASTEBOARDPOLICY_AUTHORIZED

l the openInPolicy property is set to ACOPENINPOLICY_AUTHORIZED

l the openFromPolicy property is set to ACOPENFROMPOLICY_AUTHORIZED

l the printPolicy property is set to ACPRINTPOLICY_AUTHORIZED

This behavior is necessary because no simulator version of the MobileIron client app is available, and the
MobileIron client app is necessary for your app to receive notifications. Without notifications, the authState

property cannot change to ACAUTHSTATE_AUTHORIZED, and your app cannot execute its logic that accesses its
secure data and functionality. The AppConnect library’s special simulator behavior solves this problem, allowing

Consider limitations when using the iOS simulator

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 174

you to use the iOS simulator to test your app’s functionality. You cannot, however, use the simulator to test
handling notifications from the AppConnect library.

Enable the AppConnect library to blur screens when the app
becomes inactive
AppConnect 4.0 for iOS added support for blurring screens when the app becomes inactive. Use this capability
of the AppConnect library, as described in Enable screen blurring. If your app provided its own screen blurring,
remove that code. By using the AppConnect library’s screen blurring capability, all AppConnect apps behave
consistently.

Do not put secure data in the app bundle
Files that you package in your app bundle are not AppConnect-encrypted files. Also, files packaged with an app
cannot be modified at runtime. Therefore, these files are not secure. Therefore, include only non-sensitive data
in the app bundle.

Indicate to the user that the app is initializing
Indicate in the user interface that the app is initializing if the app requires the AppConnect singleton’s instance
properties to determine what to do. For example, use an activity indicator (spinner). Remove the indication after
the app is notified that the AppConnect singleton is ready.

One reason this indication is important involves when to display sensitive data. Do not show any sensitive data
until the AppConnect singleton is ready, because until that time, the app cannot determine whether it is
authorized. Only an authorized app should show sensitive data.

Reject custom keyboard control
Custom keyboard extensions sometimes send data to servers when a device user enters data into an app. They
send this data for assistance with word-prediction, for example. This behavior has potential for harmful data loss.
MobileIron server administrators can control whether your app can use a custom keyboard by specifying a key-
value pair (MI_AC_IOS_ALLOW_CUSTOM_KEYBOARDS) on your app’s configuration. Your app can control
whether custom keyboards are allowed if the server administrator has enabled the key-value pair.

To reject custom keyboards when the server administrator has enabled the key-value pair, implement the -

shouldAllowExtensionPointIdentifier:method on your AppDelegate as follows:

// Reject all non-native keyboards.
- (BOOL) application:(UIApplication *) application

Enable the AppConnect library to blur screens when the appbecomes inactive

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 175

shouldAllowExtensionPointIdentifier:(NSString *)extensionPointIdentifier
{

if ([extensionPointIdentifier
isEqualToString:UIApplicationKeyboardExtensionPointIdentifier])

{
return NO;

}
return YES;

}

Related topics

Custom keyboard control

Do not use UIWebView to upload sensitive data
When an app uploads data, such as a file or image, using UIWebView, the UIWebView object saves the data in a
folder on the device. The folder is Apps/<app name>/tmp. The data is then available using, for example, iExplorer.

Therefore, apps should not use UIWebView to upload sensitive data. If you cannot change the app’s use of
UIWebView, be sure to delete any sensitive data from the folder after each upload attempt, whether successful,
unsuccessful, or canceled.

Provide documentation about your app to the MobileIron
server administrator
Whether your app is an in-house app or is available from the Apple App Store, a MobileIron server administrator
configures the server with information about your app. Provide the server administrator documentation that
specifies:

l whether you app enforces the print policy.

The server administrator needs to know whether allowing or not allowing your app to use print capabilities
has impact on your app’s behavior.

Because the AppConnect library enforces the pasteboard and Open In policies, the server administrator needs
no documentation from your app about how it handles it, even if you disable or enable special related user
interfaces.

l whether your app handles the pasteboard policy.
Although the AppConnect library enforces the pasteboard policy, inform the server administrator if your
app enables or disables any special user interfaces depending on the policy status. This documentation
allows the administrator to better understand your app’s expected behavior.

Do not use UIWebView to upload sensitive data

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 176

l whether you app handles the Open In policy.
Although the AppConnect library enforces the Open In policy, provide information so that the server
administrator understands your app’s expected behavior and recommendations. Specifically, document
the following:
o Whether your app enables or disables any special user interfaces depending on the policy status.
o Whether your app informs end users when they tap to open a document in an app for which Open In

is not allowed. That is, document whether you have implemented the
-appConnect:openInAttemptedWhenACOpenInPolicyBlocked: callback method.

o Whether you have a recommended list of whitelisted apps. If you do, document their bundle IDs.

l whether you app handles the Open From policy.
Although the AppConnect library enforces the Open From policy, provide information so that the server
administrator understands your app’s expected behavior and recommendations. Specifically, document
the following:
o Whether your app has any special user interfaces depending on the policy status.
o Whether your app informs end users when they have tapped another app to open a document in

your app, but your app is not allowed to receive documents from the other app. That is, document
whether you have implemented the
-appConnect:openFromAttemptedWhenACOpenFromPolicyBlocked: callback method.

o Whether you have a recommended list of whitelisted apps. If you do, document their bundle IDs.

l whether you app enforces the secure file I/O policy.
The server administrator needs to know whether your app uses secure file I/O for its sensitive data.

l the app-specific configuration key-value pairs.
Provide a list of the key-value pairs that your app expects to receive through the AppConnect API.
Provide each key’s default value if it has one. Specify if the value should default to the device’s user’s
LDAP user ID, password, or email address.

l the encryption group Id app-specific configuration key name for shared secure files.
If your app uses the Secure file I/O API details to share encrypted files with other AppConnect apps,
provide the key name of the encryption group Id that your app expects to receive through the
AppConnect API. Also, list the AppConnect apps that your app expects to share files with, so the server
administrator can provide the same value to the encryption group Id key for each of those apps.

l the values for the app-specific configuration keys MI_AC_SHARED_GROUP_ID and MI_AC_ACCESS_
CONTROL_ID
If your app provides an extension to share secure files with other AppConnect apps, provide the value of
these keys. Your app receives these key-value pairs through the AppConnect API. Also, list the
AppConnect apps that your extension expects to share files with, so the server administrator can provide
the same key-value pairs for each of those apps.

l AppTunnel information

Provide documentation about your app to theMobileIron server administrator

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 177

If your app expects to interact with internal servers using AppTunnel, specify whether your app expects
to work with AppConnect with HTTP/S tunneling, or whether it requires AppConnect with TCP tunneling.
Also, provide information about the internal servers.
For example:
o Explain the type of servers your app interacts with, such as, for example, SharePoint servers.
o Specify if your app expects to receive internal servers’ host names using the app-specific

configuration API.
o Specify if your app expects to be able to interact with all internal servers.
o If you are an in-house app developer, provide the host names of the internal servers that your app

interacts with. Also, provide the port number on each internal server that the app connects to.

l HTTPS connections that your app makes that use certificate authentication to an enterprise service.
For in-house app developers, provide the URLs of the enterprise services that use certificate
authentication.
If your app receives these URLs through app-specific configuration, make sure you listed the URLs in
the app-specific configuration key-value pair documentation.

l Dual-mode app behavior.
o Provide expected behavior and features in AppConnect mode versus non-AppConnect mode.
o If your app allows the device user to switch between AppConnect mode and non-AppConnect

mode, document what the device user must do.

l Whether your app uses the AppConnect-provided screen blurring capability
Server administrators need to know whether your app will be impacted if they disable screen blurring for
your app.

l Whether your app does not allow some or all custom keyboards.
l Whether your app includes the MI_AC_DISABLE_SCHEME_BLOCKING key set to YES in its Info.plist.

Provide documentation about your app to theMobileIron server administrator

7

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 178

AppConnect library log messages

The AppConnect library logs information messages, warnings, and errors. Use these log entries combined with
your app’s own log entries to debug your app and its use of the SDK.

All AppConnect library log entries begin with:
AppConnect:<log level>

Informational log messages
The AppConnect Library logs the following information messages:
• @"[AppConnect:Status] Starting. Library version: %@"

Logged when the app calls -startWithLaunchOptions:. The value of %@ is the version of the AppConnect
library.

• @"[AppConnect:Status] Checkin interval is unknown; attempting checkin.
Logged when the app runs for the first time, and the AppConnect library is about to contact the the MobileIron
client app.

• @"[AppConnect:Status] Checkin time is in the past; attempting checkin."
Logged when the checkin interval has expired, and the library is about to contact the MobileIron client app.

• @"[AppConnect:Status] User was inactive; triggering passcode challenge."
Logged when the AppConnect passcode auto-lock timeout has expired due to no activity in any AppConnect
app. The AppConnect library is about to contact the MobileIron client app to prompt the user to enter the
AppConnect passcode.

• @"[AppConnect:Status] Secure services are now available."
Logged when the AppConnect library has received the encryption key from the MobileIron client app, making
secure services become available.

• @"[AppConnect:Status] Secure services are now unavailable."
Logged when secure services become unavailable. This message is logged, for example, when the
AppConnect passcode’s auto-lock timeout expires.

• @"[AppConnect:Status] App is authorized but secure services are unavailable; attempting
checkin."
Logged when an app becomes authorized, but the AppConnect library has not yet received the encryption
key from the MobileIron client app. The AppConnect library will check in with the MobileIron client app to get
the key.

• @"[AppConnect:Status] Stopping."
Logged when the app calls -stop.

API usage errors and warnings
The AppConnect Library logs the following errors and warnings when the app has incorrectly called an API:

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 179

• @"[AppConnect:Error] AppConnect cannot be instantiated directly. Instead, call
+initWithDelegate: and then +sharedInstance."
The app called -init on an AppConnect instance, which is not allowed. Instead, call the static method
+initWithDelegate: of the AppConnect class once. Then use the AppConnect class method
+sharedInstance to get a reference to the AppConnect singleton.

• @"AppConnect error: +initWithDelegate: appConnectDelegate must not be nil."
The app called +initWithDelegate: with a nil appConnectDelegate parameter. Provide as the parameter
value an instance of the class that conforms to the AppConnectDelegate protocol.

• @"[AppConnect:Error] +initWithDelegate: has already been called. +initWithDelegate: should only
be called once per app launch."
The app called +initWithDelegate:more than once.

• @"[AppConnect:Error] Application called -authStateApplied:message: with ACPOLICY_UNSUPPORTED.
All applications must support all authStates."
Call -authStateApplied:message: with its ACPolicyState parameter set to either ACPOLICY_APPLIED or
ACPOLICY_ERROR.

• @"[AppConnect:Warning] Attempted to set policy state for a policy that isn't present, type =
%i."
This warning is unlikely to occur. The app called one of the notification acknowledgment methods, such as -
pasteboardPolicyApplied:message:, on a policy that the AppConnect library has not received from the
MobileIron client app. The policy type %i is a value that the AppConnect library uses internally.

• @"[AppConnect:Error] AppConnect is unable to start because [UIApplication sharedApplication] is
not an instance AppConnectUIApplication."
The call in main.m to the function UIApplicationMain is incorrect. Follow the instructions in Use
AppConnect’s UIApplication subclass.

Miscellaneous errors and warning
The AppConnect library logs the following miscellaneous errors and warnings:
• @"[AppConnect:Error] Invalid %@: URL."

The AppConnect library received an ac<bundleid>: URL, but the URL was invalid. The AppConnect library
discards the URL. The value of %@ is the invalid URL.
If you are having issues using the AppConnect library, report these errors to MobileIron Technical Support.

• @"[AppConnect:Error] internal error"
If you are having issues using the AppConnect library, report any errors that begin with @"AppConnect
internal error" to MobileIron Technical Support.

Developing AppConnect apps with Xamarin

l Overview of using AppConnect with Xamarin apps
l Available C# bindings
l Xamarin AppConnect sample apps
l How to include the Xamarin C# binding in your Xamarin project

Miscellaneous errors andwarning

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 180

l How to initialize your Xamarin app to use AppConnect C# APIs
l AppTunnel support in Xamarin apps
l AppTunnel Diagnostic API for Xamarin

Overview of using AppConnect with Xamarin apps
The AppConnect for iOS SDK provides a Xamarin C# binding for the AppConnect library APIs. This binding
allows you to develop iOS AppConnect apps using the Xamarin development platform.

If your AppConnect app is to be distributed from the Apple App Store, due to Apple App Store
requirements, your app is required to work as either an AppConnect app or a regular app. See
Developing third-party dual-mode apps.

The Xamarin AppConnect C# binding, sample apps, and C# API documentation are available at these sites:
• https://developer.mobileiron.com in

appconnect-ios-xamarin-plugin<version>_<build>.zip
• https://support.mobileiron.com/support/CDL.html in the plugins/xamarin folder of the AppConnectiOSSDK_

V<version>_<build>.zip

The xamarin folder in these ZIP files contains:
• AppConnectSDKBinding.dll
• Docs folder

Contains the Monodoc documentation of Xamarin AppConnect C# APIs.
• Docs-html folder

Contains the HTML documentation of Xamarin AppConnect C# APIs, generated for convenience from the
Monodoc documentation.

• Samples folder
Contains the sample apps HelloAppConnectXamarin and DualMode.

For general information about AppConnect, see Introducing the MobileIron AppConnect for iOS SDK.

Available C# bindings
The Xamarin AppConnect C# binding supports all the Objective-C APIs available in the AppConnect librarywith
the following exceptions:
• APIs relating to getting upload status for tunneled HTTP/S requests
• Secure file I/O POSIX-style and Objective-C APIs
• The ACSensitiveData and ACSensitiveMutableData APIs
• The custom cryptography methods -derivedAppKeyWithIdentifier:error: and

-derivedSharedKeyWithIdentifier:error:
• The -appConnect:openInAttemptedWhenACOpenInPolicyBlocked: callback method
• The -appConnectAttemptedDragAndDropToNonAppConnectApp: callback method
• The APIs relating to sharing secure files from an extension
• The APIs relating to the Open From policy (Note that the AppConnect library enforces the Open From policy)

Overview of using AppConnect with Xamarin apps

https://developer.mobileiron.com/
https://support.mobileiron.com/support/CDL.html

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 181

The AppConnect C# binding provides documentation for each method, property and enumeration in HTML and
in Monodoc format. You can also refer to the information in the Objective-C API descriptions in AppConnect for
iOS API.

Xamarin AppConnect sample apps
The AppConnectiOSSDK_V<version>_<build>.zip contains sample apps that illustrate how to use the Xamarin
AppConnect C# binding.

These sample apps are:
• HelloAppConnectXamarin

This sample app demonstrates how an app uses the Xamarin AppConnect C# binding. The app displays its
authorization status, its app configuration, and its data loss prevention policies.

• DualMode
This sample app demonstrates the behavior of a dual-mode app.
For an overview of dual-mode apps, see Developing third-party dual-mode apps.

The Xamarin AppConnect C# binding does not provide bindings for the AppConnect secure file
I/O APIs. However, it does provide bindings for the APIs that obtain an encryption key for use with custom
cryptography routines. Only Xamarin dual-mode apps that use custom cryptographic routines need to keep track
of the dual-mode data encryption states that are described in the dual-mode app section.

How to include the Xamarin C# binding in your Xamarin
project
The Xamarin AppConnect C# binding is available in AppConnectiOSSDK_V<version>_<build>.zip in
AppConnectSDKBinding.dll.

To include AppConnectSDKBinding.dll in your Xamarin solution using Xamarin Studio:
1. Unzip AppConnectiOSSDK_V<version>_<build>.zip on to your computer.
2. Open your app’s solution in Xamarin Studio.
3. In the iOS project, select References > Edit References...
4. Select the .Net Assembly tab.
5. Click Browse to navigate to and select the AppConnectSDKBinding.dll in the unzipped AppConnect SDK

folders.
6. ClickOpen to select the DLL file.
7. ClickOK.

The classes, methods, and properties of the Xamarin AppConnect C# APIs are now available for your app to
use.

Xamarin AppConnect sample apps

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 182

How to initialize your Xamarin app to use AppConnect C#
APIs
To use the AppConnect C# APIs, do the following:

1. Register as a handler of the AppConnect URL scheme

2. Declare the AppConnect URL scheme as allowed

3. Add AppConnect-related entries to your Info.plist

4. Use AppConnect’s UIApplication subclass

5. Initialize the AppConnect library

6. Wait for the AppConnect singleton to be ready

7. Optional: Specify app permissions and configurations in a plist file

Register as a handler of the AppConnect URL scheme

Your app must handle the AppConnect URL scheme. The MobileIron client app uses this URL scheme to
communicate with your app’s instance of the AppConnect library.

Register the AppConnect URL scheme by modifying the app’s Info.plist. You edit the key called URL types as
follows:

1. Set URL Identifier to the app’s bundle ID.
For example:
com.mobileiron.ios.xamarin.HelloAppConnect

2. Set URL Schemes to the app’s bundle ID, prefixed with ac.
For example:
accom.mobileiron.ios.xamarin.HelloAppConnect

For example, to edit Info.plist using Xamarin Studio:

1. Open your app’s Xamarin solution.

2. Open the app’s Info.plist in the property list editor.

3. Select Advanced.

4. Click Add URL Type.

5. Set URL Identifier to the app’s bundle ID.
For example:
com.mobileiron.ios.xamarin.HelloAppConnect

6. Set URL Schemes to the app’s bundle ID, prefixed with ac.
For example:
accom.mobileiron.ios.xamarin.HelloAppConnect

How to initialize your Xamarin app to use AppConnect C#APIs

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 183

Declare the AppConnect URL scheme as allowed

Declare the appconnect and the alt-appconnectURL schemes in your app’s Info.plist as allowed URL schemes.
Your app’s instance of the AppConnect library:

l uses the appconnect URL scheme to communicate with Mobile@Work or MobileIron Go.
l uses the alt-appconnect URL scheme to communicate with MobileIron AppStation.

To allow the appconnect and alt-appconnect URL schemes, add a key called LSApplicationQueriesSchemes to
the app’s Info.plist as follows:

1. Add a key of type Array.

2. Set the name of the key to LSApplicationQueriesSchemes.

3. Add an item to the array.

4. Set the value of the item to appconnect.

5. Add another item to the array.

6. Set the value of the item to alt-appconnect.

Example : Editing the Info.plist using Xamarin Studio

1. Open your app’s Xamarin solution.

2. Open the app’s Info.plist in the property list editor.

3. Select Source.

4. Select Add new entry.

5. Select the +.

6. Change the name of the property from Custom Property to LSApplicationQueriesSchemes.

7. In the Type column, select Array.

8. Select Add new entry, which appears indented under the new property.

9. Select the +.

10. In the Value column for the new String item, enter appconnect.

11. Similarly, add a new entry to the LSApplicationQueriesSchemes array with the value alt-appconnect.

Add AppConnect-related entries to your Info.plist
• Enable screen blurring
• Allow Face ID

Enable screen blurring

The AppConnect library can automatically blur your app’s screen whenever it is not active. This security
measure protects the app’s data from being captured in screenshots. The AppConnect library blurs the screen
when
-applicationWillResignActive: is called and unblurs it when -applicationDidBecomeActive: is called.

Declare the AppConnect URL schemeas allowed

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 184

To enable screen blurring, add the key MI_AC_PROVIDE_SCREEN_BLUR to your app’s Info.plist as a
Boolean. Set the value to YES.

When you set the Info.plist key MI_AC_PROVIDE_SCREEN_BLUR to YES, the MobileIron server
administrators can disable screen blurring by setting a key-value pair on the server for your app’s configuration.
The server key is MI_AC_ENABLE_SCREEN_BLURRING with the value false.

NOTE: If youalready implemented screenblurring in your app, remove that codeanduse theMI_AC_
PROVIDE_SCREEN_BLURplist key. Using theplist keyensures thatall AppConnectappsbehave
consistently.

Allow Face ID

Include Privacy - Face ID Usage Description to your app’s info.plist, with a string value indicating the purpose
of Face ID use. For example, add the value AppConnect. If you manually add this key, its name is
NSFaceIDUsageDescription.

Server administrators can allow the use of Touch ID or Face ID instead of an AppConnect passcode. Therefore,
this Info.plist entry is required on iOS 11 through the most recently released version as supported by MobileIron.

Use AppConnect’s UIApplication subclass

To use AppConnect’s UIApplication subclass:

1. Open Main.cs for editing.

2. Change the second argument of the call to UIApplication.Main() to
AppConnectBinding.Constants.kACUIApplicationClassName.
The second argument, the principalClassName argument, is the UIApplication class or subclass for the
app.

3. Make sure the third argument of the call to UIApplication.Main() is your UIApplicationDelegate
subclass name.

For example, in the HelloAppConnectXamarin app provided with the AppConnect for iOS SDK, the statement
that calls UIApplication.Main() is:

UIApplication.Main(args, AppConnectBinding.Constants.kACUIApplicationClassName,
"HACAppDelegate"));

NOTE: If youusea subclass of UIApplication for your app:

1. Derive your subclass fromAppConnectUIApplication instead of UIApplication.

2. Use the name of your AppConnectUIApplication subclass for the principalClassName argument in the call
to UIApplication.Main().

Allow Face ID

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 185

3. When you override a UIApplicationmethod in your AppConnectUIApplication subclass, always invoke the
method implementation of the superclass AppConnectUIApplication at the end of your method.
If you do not invoke the superclass implementation, AppConnect features will not work in your app.

Initialize the AppConnect library

To initialize the AppConnect library for your app to use:

Edit your AppDelegate source file

1. Open your AppDelegate source file for editing.

2. Add the following line to your using statements:
using AppConnectBinding;

Create a subclass of AppConnectDelegate

In your AppDelegate source file:

1. Create a subclass of AppConnectDelegate. Do the following:

l Implement each abstract method in AppConnectDelegate.

l Implement each virtual method in AppConnectDelegate that your app’s functionality requires.
For example, in HelloAppConnectXamarin, in AppDelegate.cs, the HACAppConnectDelegate class
derives from the AppConnectDelegate class.
Details about each method is available in the code. You can also refer to the corresponding Objective-C
method in AppConnect for iOS API.

2. If you want to retrieve you app’s original UIApplicationDelegate object, model your code from this line
from HelloAppConnectXamarin:

this.hacAppDelegate = (HACAppDelegate)
((AppConnectUIApplication)UIApplication.SharedApplication).OriginalDelegate;

NOTE: Xamarinappsmust use OriginalDelegate toget theUIApplicationDelegateobject. Formore
information, seeoriginalDelegateproperty (deprecated).

Initialize the AppConnect library

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 186

Modify your UIApplicationDelegate subclass

Modify your UIApplicationDelegate subclass as follows:

1. Instantiate the AppConnectDelegate subclass object.
For example, in HelloAppConnectXamarin:
this.appConnectDelegate = new HACAppConnectDelegate();

2. Call the static method InitWithDelegate() of the AppConnect class.The method takes as a parameter
an object of the AppConnectDelegate subclass.
For example, in HelloAppConnectXamarin, in the HACAppDelegate class implementation, the method
FinishedLaunching() calls InitWithDelegate() as follows:
AppConnect.InitWithDelegate(this.appConnectDelegate);

3. Save the singleton instance of the AppConnect library.
For example, in HelloAppConnectXamarin, the HACAppDelegate object saves the singleton instance in
the appConnectmember variable:
this.appConnect = AppConnect.SharedInstance;

4. Call the AppConnect singleton’s method StartWithLaunchOptions().
The app must:

l Call this method from its AppDelegate’s method FinishedLaunching()

l Pass along its options parameter value.
For example, in HelloAppConnectXamarin:
this.appConnect.StartWithLaunchOptions(options);

After this step, the AppConnect singleton is initializing. However, the app cannot yet use the singleton’s
instance properties. The app can:

l use the AppConnect class properties.
l use the methods of the AppConnect singleton object.

5. If your application supports UIScene, call the AppConnect singleton’s method
SceneWillConnectToSessionWithOptions() from your UIScene delegate's void WillConnect (UIScene

scene, UISceneSession session, UISceneConnectionOptions connectionOptions)method passing
connectionOptions as an input parameter.
For example:

public class MySceneDelegate : UIWindowSceneDelegate {
public override void WillConnect (UIScene scene, UISceneSession session,

UISceneConnectionOptions connectionOptions)
{

AppConnect.SharedInstance.SceneWillConnectToSessionWithOptions(connectionOptions);
}

}

6. Indicate in the user interface that the app is initializing if the app requires the AppConnect singleton’s
instance properties to determine what to do. For example, use an activity indicator (spinner). Remove

Modify your UIApplicationDelegate subclass

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 187

the indication after the app is notified that the AppConnect singleton is ready.
One reason this indication is important involves when to display sensitive data. Do not show any
sensitive data until the AppConnect singleton is ready, because until that time, the app cannot determine
whether it is authorized. Only an authorized app should show sensitive data.

Wait for the AppConnect singleton to be ready

The app cannot use the AppConnect singleton’s instance properties until the Ready property on the AppConnect
singleton is set to true. It is set to true when the callback method AppConnectIsReady() in your
AppConnectDelegate subclass is called. The app can now access the instance properties, such as AuthState
and PasteboardPolicy, on the AppConnect singleton.

Before accessing any instance properties, use the Ready getter to make sure the properties are accessible.

For example, in HelloAppConnectXamarin, the AppConnectIsReady() callback method calls UpdateLabels().
The UpdateLabels() method calls various methods that access the instance properties on the AppConnect
singleton. Because other methods also call
UpdateLabels(), UpdateLabels() first checks the Ready property:

if (this.appConnect.Ready) {

// Call methods that access instance properties.
}
else {

authInfoText = "Ready: NO (AppConnect is not ready yet)";
policyInfoText = "AppConnect is not ready yet";
configInfoText = "AppConnect is not ready yet";

}

For details about the AppConnectIsReady() callback method andthe Ready property, see the code. You can
also refer to the corresponding Objective-C information in AppConnect ready API details .

Optional: Specify app permissions and configurations in a plist file

If your app is an in-house app, you can specify default values for:

l the data loss prevention policies, such as the Open In policy
l the key-value pairs for your app-specific configuration

Specifically, you can provide a special plist file called AppConnect.plist as part of your in-house app that:

l specifies whether your app should be allowed by default to copy to the iOS pasteboard, use document
interaction (Open In and Open From), and print.

l specifies app-specific configuration keys and default values.

Wait for the AppConnect singleton to be ready

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 188

These default values are used by MobileIron server to make it easier for the server administrator to set up your
app with the correct data loss prevention policies and app-specific configurations. Your app never reads the
AppConnect.plist.

When you include the AppConnect.plist in your app:
1. When an administrator uploads your in-house app to the MobileIron server, the server uses this plist file to

automatically create server policies that contain your specified data loss prevention policies and app-specific
configuration.

2. The administrator can then edit these policies.
For example:
- If one of your app-specific configuration keys requires a URL of an enterprise server, the administrator

provides that value.
- If the administrator requires stricter data loss prevention policies than your app’s default values, the

administrator changes the values.
3. The administrator then applies these policies to the appropriate set of devices.
4. When your app runs, it receives the data loss prevention policies and app-specific configuration by using the

AppConnect for iOS APIs.
For example, to handle app-specific configurations, you use the Config property (an NSDictionary object)
and the callback method ConfigChanged().

5. If the administrator later changes the data loss prevention policies or app-specific configuration, your app
receives the updates by using the AppConnect for iOS APIs.

An example of an AppConnect.plist file as viewed in Xamarin Studio looks like the following:

Create the AppConnect.plist in Xamarin Studio

To create an AppConnect.plist file in your Xamarin solution using Xamarin Studio:
1. Open your app’s Xamarin solution.
2. Select Resources > Add New File.

Create the AppConnect.plist in Xamarin Studio

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 189

3. Select iOS.
4. Select Property List.
5. For Name, enter AppConnect.plist.
6. Click New.

Edit the AppConnect.plist
1. In the Root key of AppConnect.plist, place a key called bundleid with the type String, and set the value to the

bundle ID of your app.
2. In the Root key of AppConnect.plist, create two keys called policy and config, each with the type Dictionary.
3. In the policy dictionary, create keys called openin, openinwhitelist, openfrom,

openfromwhitelistpasteboard, and print, each with the type String.
4. Set these keys’ values as given in the following table:

Edit the AppConnect.plist

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 190

Key Possible values and meanings

openin • allow
Document interaction is allowed with all other apps.

• disable
Document interaction is not allowed.

• whitelist
Only documents in the openinwhitelist list can open documents from your
app.

• appconnect
Document interaction is allowed with all other AppConnect apps.

NOTE: This value results in theapp receivingawhitelist in theOpen Inpolicy
API. Thewhitelist contains the list of all currently authorized
AppConnectapps. Youdonot enter an openinwhitelist key in the
plist. See TheopenInPolicyandopenInWhitelist properties .

openinwhitelist Semi-colon separated list of the bundle IDs of the apps with which document
interaction is allowed. This key is necessary when the openin key has the value
whitelist.

pasteboard • allow
Pasteboard interaction is allowed with all other apps. That is, this option allows
the device user to be able to copy content from your app to the iOS pasteboard.
Then, any app can copy from the content from the pasteboard.

• disable
Pasteboard interaction is not allowed.

• appconnect
Pasteboard interaction is allowed only with other AppConnect apps. That is,
this option allows the device user to be able to copy content from your app to
the iOS pasteboard. Then, only other AppConnect apps can copy from the
content from the pasteboard.

print • allow
Printing is allowed.

• disable
Printing is not allowed.

TABLE 42. APPCONNECT.PLIST KEYS AND VALUES

5. In the config dictionary, create keys as required for your app.
6. Optionally, add values for the keys. The values must be String types.

The value $USERID$ in the example tells MobileIron Core to substitute the device user’s user ID for the value.
Other possible variables for Core are $EMAIL$ and $PASSWORD$. Depending on the Core configuration, custom
variables called $USER_CUSTOM1$ through $USER_CUSTOM4$ are sometimes available.

Convert the AppConnect.plist to binary format

The MobileIron server requires that the AppConnect.plist uses binary plist format. When creating an iOS app
with Xamarin Studio, you must manually convert the AppConnect.plist to binary format. You can convert

Convert the AppConnect.plist to binary format

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 191

AppConnect.plist using a custom build command.

Do the following:
1. In Xamarin Studio, select your project.
2. SelectOptions.
3. Select Build > Custom Commands.

4. For Configuration, select Release.
5. For Platform, select iPhone.
6. Select Before Build.
7. In the Command field, enter:

plutil -convert binary1 Resources/AppConnect.plist
8. SetWorking Directory to ${ProjectDir}.
9. ClickOK.
10. Repeat steps, this time selecting Debug for the Configuration field.

AppTunnel support in Xamarin apps
Apps built with the Xamarin development platform can access network servers various ways. AppTunnel with
HTTP/S tunneling is supported only as follows:
• The app uses the NSURLConnection or NSURLSession APIs exposed to C# through the Xamarin.iOS

binding.
• The app uses the ModernHttpClient library with NSURLSession. The ModernHttpClient library with

CFNetwork will not work.
For example, the app initializes the instance of the ModernHttpClient as follows:

var httpClient = new HttpClient (new NativeMessageHandler ());

AppTunnel support in Xamarin apps

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 192

AppTunnel Diagnostic API for Xamarin
The AppTunnel Diagnostic API for Xamarin provides troubleshooting information for an app’s use of AppTunnel
with HTTP/S tunneling. Typically, you add a user interface, such as a menu item, to invoke a diagnostic run for
tunneling to a specified URL. Your app then displays or logs the results of the diagnostic run. The API performs
the following diagnostics:

Diagnostic Description

Run life cycle Tests the beginning, ending, and restarting of connections. Redirects restart the
connection with a new URL, new cookies, and/or new connection settings.

Policy integrity Checks that the following elements in the AppTunnel policy that relate to the
request are valid:
• Client identity
• Server certificate
• At least one tunneling rule in the policy
• A rule that matches the request

Certificate challenges Evaluates the certificate from the sentry, and uses the client identity to
authenticate with the server. If both of these challenges succeed, the API
establishes a connection with the sentry. If you start another run while the
connection is still established, the new run will not perform any certificate
related diagnostics.

Connection results Presents the data received by the app from the backend server.

TABLE 43. DIAGNOSTICS PERFORMED BYAPPTUNNEL DIAGNOSTICAPI FOR XAMARIN

Set up your app to use the AppTunnel Diagnostic API for Xamarin

See AppTunnel Diagnostic API for Xamarin for instructions on setting up your app to use this API.

Run the API

This API is a copy of the native AppTunnel diagnostic API, with the exception that C# nomenclature is used. For
details on running this API, please refer to the AppConnect C# binding which provides documentation for each
method, property and enumeration in HTML and in Monodoc format.

API Response

The API returns the following series of messages to the console:

AppTunnel Diagnostic API for Xamarin

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 193

Message Message Content Description

1 Success:

Diagnostic run started. Requesting (URL)

Failure:

N/A

Indicates successful start of the API run.

2 Success:

Request matches a tunneling rule so it will be
tunneled.

Failure:
• Request does not match a tunneling rule

so it will not be tunneled
• AppTunnel policy has no tunneling rules.

Succeeds if an initial or redirected request
matched a tunneling rule, or fails otherwise.

3 Success:

Server certificate in the AppTunnel policy is
valid.

Failure:
• No server certificate was found in the

AppTunnel policy.
• Server certificate in the AppTunnel policy

is invalid. It may have expired.

Succeeds if the policy contains a valid server
certificate, or fails otherwise.

4 Success:

Server certificate passed all evaluation

Failure:

Server certificate was not trusted. The trust
result was (trust result)

Succeeds if the sentry's server-side
certificate is valid, or fails otherwise.

5 Success:

Failure:
• Server issued an auth challenge type

that the diagnostic does not support.
• Aborting the diagnostic and the auth

challenge. Auth challenge type is (auth
type)

Returns message if the diagnostic is aborted
because the server issued an auth challenge
that the diagnostic does not support. Returns
no message on success.

6 Success:

Client identity in the AppTunnel policy
appears to be valid.

Failure:
• No client identity in the AppTunnel policy.

Succeeds if the policy contains a valid client
identity, or fails otherwise.

TABLE 44. APPTUNNEL DIAGNOSTICAPI RESPONSE MESSAGES

API Response

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 194

Message Message Content Description

• Client certificate in the AppTunnel policy
is invalid. It may have expired.

7 Success:

Authenticated with client identity

Failure:

There was a previous failure of the client
auth challenge.

Succeeds if the client-side certificate was
sent, or fails otherwise.

8 Success:

The server redirected to a new URL.
Redirected by server to new URL (url)

Failure:

N/A

Always succeeds.

9 Success:

Received HTTP status code
(1xx, 2xx, or 3xx)

Failure:

Received HTTP status code
(4xx or 5xx)

The server returns an HTTP status code.
Status codes in the 1xx, 2xx, and 3xx range
indicate success. Status codes in the 4xx
and 5xx range indicate failure.

10 Success:

Received (bytes) bytes of data

Failure:

No message appears

If data is received, the API returns a
message.

11 Success:

Session completed normally

Failure:

Session completed with error: (error)

Fails if the session completed with an error,
or succeeds otherwise.

TABLE 44. APPTUNNEL DIAGNOSTICAPI RESPONSE MESSAGES (CONT.)

API Response

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 195

Sample response

Sample response

8

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 196

FIPS compliance in an AppConnect SDK app

You can make an AppConnect app FIPS compliant. FIPS compliance information is available at:

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

The following features of the AppConnect for iOS SDK allow you to make a FIPS compliant AppConnect app:
• The SDK is FIPS compliant on all iOS devices running supported versions of iOS as listed in Product

versions required .
It is not FIPS compliant on devices running previous iOS versions.

The AppConnect for iOS SDK uses ECDH and AES-256-GCM protocols for the inter-app communication bus
between AppConnect apps and Mobile@Work.

• The SDK uses FIPS compliant algorithms for all cryptographic operations.
• The SDK uses OpenSSL for cryptography.

The use of OpenSSL allows you to link into a FIPS compliant version of the OpenSSL library in your app.

To make your app is FIPS compliant with regard to its use of the AppConnect for iOS SDK, do the following:
• Link into an OpenSSL library built in FIPS mode. When you link your OpenSSL library to your Xcode project,

make sure it is listed higher than the AppConnect.xcframework in Xcode under Linked Frameworks and
Libraries.

MobileIron has verified that the AppConnect for iOS SDK works correctly using OpenSSL library version 1.0.2h.
Check OpenSSL documentation to determine differences with other OpenSSL library versions.

• Make sure that you have initialized OpenSSL in FIPS mode before calling any AppConnect for iOS APIs.
• If you use your own libcrypto.a file, make sure it is FIPS compliant. The libcrypto.a file included in the

AppConnect.xcframework is FIPS compatible.

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

9

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 197

Testing for third-party app developers

l Third-party AppConnect app testing overview
l Set up MobileIron Core
l Set up your end-user device
l Test authorization status handling
l Test data loss prevention policy handling
l Test AppConnect configuration change handling
l Test using AppTunnel
l Test logging messages to the console or files
l Test the app documentation

Third-party AppConnect app testing overview
Test your app using the instructions in this chapter or the instructions in Testing for in-house app developers
based on the following table:

Your role Testing instructions

Third-party app developer This chapter

In-house app developer whose organization uses MobileIron
Cloud

This chapter

In-house app developer whose organization uses MobileIron
Core or Connected Cloud.

See Testing for in-house app developers.

TABLE 45.WHERE TO FIND THE RIGHT TESTING INSTRUCTIONS

Testing with MobileIron Core as described in this chapter is necessary to verify the AppConnect-related
functionality of your AppConnect app. If your app accesses servers behind a firewall using AppTunnel, a
Standalone Sentry is necessary to verify the AppTunnel feature. All AppConnect apps require Mobile@Work to
interact with Core.

For testing your app, MobileIron provides you access to MobileIron Connected Cloud, the cloud offering of the
on-premise server MobileIron Core. MobileIron also provides you access to Standalone Sentry if necessary. You
then use a web portal called the Admin Portal to make configuration changes necessary for testing your app.

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 198

NOTE: Apps that you testwithMobileIronConnectedCloudandMobile@Workwill alsoworkwith
MobileIronCloudand supportedversions ofMobileIronGo.However, someAppConnect features
arenot supportedbyMobileIronCloudandMobileIronGo.

Use an enterprise build of your app for testing. When your app is completely tested, build a distribution build for
distributing the app through the Apple App Store. These procedures are for testing only.

Before you begin:
• Contact MobileIron to provide you with a Core (Connected Cloud) and (if necessary) Standalone Sentry.
• Get Mobile@Work from the Apple App Store.

Set up MobileIron Core
To set up Core for testing your AppConnect app, do the following high-level steps:
1. Login to the Admin Portal.
2. Enable AppConnect on MobileIron Core.
3. Configure the AppConnect global policy.
4. Create an AppConnect container policy.

NOTE: These instructionsare forCore 9.7.0.0.

Login to the Admin Portal

MobileIron provides you with the following information about your test MobileIron Core:
• the URL for accessing the Core’s Admin Portal

The Admin Portal is a web portal for configuring Core. The URL has the format:
https://m.mobileiron.net/<app partner name>

• a user ID and password for accessing the Admin Portal
You also use this user ID to register a device with Core.

• a port number for Core, used when you register a device with Core.
The port number is typically four or five digits.

To login to Core:
1. Open a browser to the URL for accessing the Core’s Admin Portal.

Use the URL of your test Core, appended with /mifs. For example:
https://m.mobileiron.net/myCompany/mifs

2. Enter your Username and Password.
3. Click Sign In.

You are now in the Admin Portal.
Change your password when prompted.

Enable AppConnect on MobileIron Core

To enable AppConnect on Core:
1. In the Admin Portal, go to Settings.
2. Select Additional Products > Licensed Products.

Set upMobileIronCore

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 199

3. Select AppConnect For Third-party And In-house Apps if it is not already selected.
4. Click Save.

Configure the AppConnect global policy

An AppConnect global policy is necessary for your AppConnect app to work properly.

To configure an AppConnect global policy:
1. In the Admin Portal, select Policies & Configs > Policies.
2. Select the row that says Default AppConnect Global Policy for the Policy Name.
3. Click Edit in the right-hand pane.
4. For AppConnect, select Enabled.

The display now shows all the AppConnect global policy fields.
5. In the AppConnect Passcode section, for Passcode Type, select Numeric.
6. In the AppConnect Passcode section, select Passcode Is Required For iOS Devices.
7. Click Save.

NOTE: Donot selectAuthorize in the fieldAppsWithoutAnAppConnectContainer Policy in the section
Data Loss Prevention Policies in theAppConnectglobal policy. Youwill authorize theappwithan
AppConnect container policy instead.

Create an AppConnect container policy

An app is authorized only if an AppConnect container policy for the app is present on the device.

To create an AppConnect container policy:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select Add New > AppConnect > Container Policy.
3. Enter a name for the AppConnect container policy.

For example: My App’s Container Policy
4. In the Application field, enter the bundle ID of your app.

For example: com.MyCompany.MySecureApp
5. Click Save.

The dialog box closes and the new AppConnect container policy appears in the list.
6. Select the AppConnect container policy you just created.
7. Select Actions > Apply To Label.
8. Select iOS.
9. Click Apply.
10. Click OK.

Set up your end-user device
To set up your end-user device, do the following high-level steps:
1. Set up Mobile@Work on an iOS device.
2. Install your app on the device.
3. Set up the AppConnect passcode on the device.

Configure the AppConnect global policy

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 200

Set up Mobile@Work on an iOS device

To set up Mobile@Work for iOS on your device:
1. Download and install Mobile@Work from the Apple App Store.
2. Tap the MobileIron app icon to launch Mobile@Work.
3. Enter the user name that MobileIron gave you.

You use the same user name that you use to log into the Admin Portal.
4. Enter the server as follows:

m.mobileiron.net:<port number>
where <port number> is the port number you received from MobileIron along with your user name and
password.
For example:
m.mobileiron.net:27643

5. Enter the password.
Enter the password that you created when you first logged into the Admin Portal.

6. Follow the prompts from Mobile@Work to complete its setup.
Allow Mobile@Work to use the current location.
Install new profiles and certificates when prompted.

Install your app on the device

Install your app on the device in the same way you install any app that you are testing.

Set up the AppConnect passcode on the device

When you run your app for the first time, Mobile@Work prompts you to create the AppConnect passcode. Follow
the steps to create the AppConnect passcode.

Test authorization status handling
You can make changes to Core configuration to test your app’s handling of the different authorization statuses:
authorized, unauthorized, and retired.

Change the status to authorized or unauthorized

A security policy on Core specifies the requirements for a device. If a device is not compliant with a requirement,
the security policy specifies a compliance action. One compliance action is to block AppConnect apps on the
device, which means that the apps become unauthorized.

The list of requirements that can impact authorization is long, but for testing your app, you need to work with only
one requirement. The requirement involves a list of device models that are not allowed to use AppConnect apps.

Therefore, to unauthorize the app on the device:
1. In the Admin Portal, select Policies & Configs > Policies.
2. Select the Default Security Policy.

Set upMobile@Work on an iOS device

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 201

3. Click Edit in the right-hand pane.
4. Scroll down to the section called Access Control, under For iOS Devices.
5. Select Block Email, AppConnect Apps, And Send Alert For The Following Disallowed Devices.
6. Move the model of your test device to the Disallowed area.
7. Click Save.

Push the change to your device immediately, by doing the following steps on the device:
1. Launch Mobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notification that it is unauthorized. Otherwise, it receives the notification
the next time it runs.

Verify that your app correctly handles the change to the unauthorized state. Specifically, verify that your app:
• exits any sensitive part of the application.
• stops allowing the user to access sensitive data and views.
• displays the message received in the callback method that explains the authorization status change.
• calls the -authStateApplied:message: method.

To re-authorize the app on the device:
1. In the Admin Portal, select Policies & Configs > Policies.
2. Select the Default Security Policy.
3. Click Edit in the right-hand pane.
4. In the section called Access Control, under For iOS Devices, uncheck Block Email, AppConnect Apps, And

Send Alert For The Following Disallowed Devices.
5. Click Save.

Push the change to your device immediately, by doing the following steps on the device:
1. Launch Mobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notification that it is authorized. Otherwise, it receives the notification the
next time it runs.

Verify that your app correctly handles the change to the authorized state. Specifically, verify that your app:
• allows the user to access sensitive data and views.
• calls the -authStateApplied:message: method.

Change the status to retired

An app is authorized only if an AppConnect container policy for the app is present on the device. If you remove
the AppConnect container policy from the device, the app becomes retired.

To retire the app on the device:
1. In the Admin Portal, select Policies & Configs > Configurations.

Change the status to retired

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 202

2. Select the AppConnect container policy for your app.
3. Select Actions > Remove From Label.
4. Select iOS.
5. Click Remove.

Push the change to your device immediately, by doing the following steps on the device:
1. Launch Mobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notification that it is retired. Otherwise, it receives the notification the
next time it runs. The message string in the notification is the default unauthorized message:
“Your administrator has not authorized this app.”

Verify that your app correctly handles the change to the retired state. Specifically, verify that your app:
• exits any sensitive part of the application.
• deletes all sensitive data, including any stored authentication credentials, data in files, keychain items,

pasteboard data, and any other persistent storage.
• displays the message received in the callback method that explains the authorization status change.
• calls the -authStateApplied:message: method.

Reauthorize a retired app

A retired app is sometimes re-authorized at a later time.

To reauthorize the retired app on the device:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select the AppConnect container policy for your app.
3. Select Actions > Apply To Label.
4. Select iOS.
5. Click Apply.
6. Click OK.

Push the change to your device immediately, by doing the following steps on the device:
1. Launch Mobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notification that it is authorized. Otherwise, it receives the notification the
next time it runs.

Verify that your app correctly handles the change to the authorized state. Specifically, verify that your app:
• dismisses any user interface that displays that the user is not authorized to use the app.
• allows the user to access sensitive data and views.
• calls the -authStateApplied:message: method.

Reauthorize a retired app

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 203

Test data loss prevention policy handling
The AppConnect container policy for your app specifies its data loss prevention (DLP) policies. In this policy, you
specify whether your app is allowed to:
• copy content to the iOS pasteboard.
• drag and drop content to other apps
• print by using AirPrint, any future iOS printing feature, any current or future third-party libraries or apps that

provide printing capabilities.
• share documents with other apps.

By changing the AppConnect container policy, you can test:
• your app’s behavior for each data loss prevention policy.
• how your app handles changes to the policies in the notification callback methods in the

AppDelegateProtocol.

To change the DLP policies:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select the AppConnect container policy for your app.
3. Click Edit in the right-hand pane.
4. Allow or prohibit features relating to data loss prevention policies as follows:

DLP policy Description

Allow Print Select Allow Print if you want the app to use the device’s print capabilities.

Allow Copy/Paste To Select Allow Copy/Paste To if you want the device user to be able to copy content
from the AppConnect app to other apps.

When you select this option, then select either:
• All Apps

Select All Apps if you want the device user to be able to copy content from the
AppConnect app and paste it into any other app.

• AppConnect Apps
Select AppConnect Apps if you want the device user to be able to copy
content from the AppConnect app and paste it into only other AppConnect
apps.

Allow Drag and Drop Select Allow Drag and Drop if you want the device user to be able to drag content
from the AppConnect app to other apps.

When you select this option, then select either:
• All Apps

Select All Apps if you want the device user to be able to drag content from the
AppConnect app to any other app.

• AppConnect Apps
Select AppConnect Apps if you want the device user to be able to drag
content from the AppConnect app to only other AppConnect apps.

TABLE 46. DLP POLICY DESCRIPTIONS

Test data loss prevention policy handling

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 204

DLP policy Description

Allow Open In Select Allow Open In if you want the app to be allowed to use the device’s Open In
(document interaction) feature.

When you select this option, then select either:
• All Apps

Select All Apps if you want the app to be able to send documents to any other
app.

• AppConnect Apps
Select AppConnect Apps to allow an AppConnect app to send documents to
only other AppConnect apps.

NOTE: This option results in the openInPolicyproperty having thevalue
ACOPENINPOICY_WHITELIST. Also, the openInWhitelistproperty contains
the list of currently authorizedAppConnectapps.

• Whitelist
Select Whitelist if you want the app to be able to send documents only to the
apps that you specify.
Enter the bundle ID of each app, one per line, or in a semicolon delimited list.
For example:
com.myAppCo.myApp1
com.myAppCo.myApp2;com.myAppCo.myApp3
The bundle IDs that you enter are case sensitive.

TABLE 46. DLP POLICY DESCRIPTIONS (CONT.)

5. Click Save.
6. Click Yes to confirm.

Push the change to your device immediately, by doing the following steps on the device:
1. Launch Mobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notifications for the updated DLP policies. Otherwise, it receives the
notifications the next time it runs.

Verify that your app correctly handles the data loss prevention policy changes, as shown in the following table:

Test data loss prevention policy handling

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 205

Policy change What to verify

Allow copy/paste to for all
apps

• Verify that the user can cut or copy text, images, or other data to the
pasteboard.

• Where appropriate, verify that any special user interface that offers the
ability to cut or copy data is available and enabled.

Also, verify that your app calls the -pasteboardPolicyApplied:message:
method.

Allow copy/paste to for
AppConnect Apps only

• Verify that the user can cut or copy text, images, or other data to the
pasteboard.

• Where appropriate, verify that any special user interface that offers the
ability to cut or copy data is available and enabled.

• Verify that the user can paste the data from the pasteboard only into other
AppConnect apps.

Also, verify that your app calls the -pasteboardPolicyApplied:message:
method.

Do not allow copy/paste to • Verify that the user cannot to cut or copy text, images, or other data to the
pasteboard.

• Where appropriate, verify that any special user interface that offers the
ability to cut or copy data is removed or disabled.

• Verify your implementation of the callback method
-appConnect:copyAttemptedWhenUnauthorized:.

Also, verify that your app calls the -pasteboardPolicyApplied:message:
method.

Allow drag and drop to
only AppConnect apps

Verify your implementation of the callback method
-appConnectAttemptedDragAndDropToUnauthorizedApp:.

Allow open in for all apps Verify that your app enables user interfaces, if any, that give the user the
option to use Open In.

Also, verify that your app calls the -openInPolicyApplied:message: method.

Allow open in for
AppConnect apps

Verify that:
• your app enables user interfaces, if any, that give the user the option to

use Open In.
• your app calls the -openInPolicyApplied:message: method.
• the -appConnect:openInAttemptedWhenACOpenInPolicyBlocked: callback

method, if implemented, behaves as you expect.

Allow open in for
whitelisted apps

Verify that:
• your app enables user interfaces, if any, that give the user the option to

use Open In.
• your app calls the -openInPolicyApplied:message: method.
• the -appConnect:openInAttemptedWhenACOpenInPolicyBlocked: callback

TABLE 47.WHAT TO VERIFY WHEN ADLP POLICY CHANGES

Test data loss prevention policy handling

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 206

Policy change What to verify

method, if implemented, behaves as you expect.

Do not allow open in Verify that:
• your app disables user interfaces, if any, that give the user the option to

use Open In.
• your app calls the -openInPolicyApplied:message: method.
• the -appConnect:openInAttemptedWhenACOpenInPolicyBlocked: callback

method, if implemented, behaves as you expect.

Allow print For each part of your app that allows the user to print secure data, verify the
capability is enabled.

Also, verify that your app calls the -printPolicyApplied:message: method.

Do not allow print For each part of your app that allows the user to print secure data, verify the
capability is removed or disabled.

Also, verify that your app calls the -printPolicyApplied:message: method.

TABLE 47.WHAT TO VERIFY WHEN ADLP POLICY CHANGES (CONT.)

Test AppConnect configuration change handling
AppConnect app configuration on MobileIron Core specifies key-value pairs for configuring your app. You add,
and edit, key-value pairs using the Admin Portal.

By changing the AppConnect app configuration, you can test your app’s -appConnect:configChangedTo:
method in the AppDelegateProtocol.

Create an AppConnect app configuration

To create an AppConnect app configuration:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select Add New > AppConnect > App Configuration.
3. Enter a name for the AppConnect app configuration.

For example: My App’s App Configuration
4. In the Application field, enter the bundle ID of your app.

For example: com.MyCompany.MySecureApp
5. In the App-specific Configurations section, click Add+ to add a key-value pair.
6. Enter the key-value pairs.

Test AppConnect configuration change handling

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 207

Key The key is any string that the app recognizes as a configurable item.

For example: userid, appURL

Value Enter the value. The value is either:
• a string

The string can have any value that is meaningful to the app. It can also include
one or more of these MobileIron Core variables: $USERID$, $EMAIL$,
$USER_CUSTOM1$, $USER_CUSTOM2$, $USER_CUSTOM3$, $USER_
CUSTOM4$.
If you do not want to provide a value, enter $NULL$. The $NULL$ value tells
the app that the app user will need to provide the value.
Examples:
$USERID$
https://someEnterpriseURL.com

• a Certificate Enrollment or Certificates setting
Certificate Enrollment and Certificate settings that are configured in Policies &
Configs > Configurations appear in the dropdown list. When you choose a
Certificate Enrollment or Certificate setting, Core sends the contents of the
certificate as the value. The contents are base64-encoded.
If the certificate is password-encoded, Core automatically sends another key-
value pair. The key’s name is the string <name of key for certificate>_MI_
CERT_PW. The value is the certificate’s password.

TABLE 48. KEY-VALUE PAIRS IN ANAPPCONNECT APP CONFIGURATIONKEY

7. Click Save.
8. Click Yes to confirm.
9. Select the new AppConnect app configuration.
10. Select Actions > Apply To Label.
11. Select iOS.
12. Click Apply.
13. Click OK.

Push the change to your device immediately, by doing the following steps on the device:
1. Launch Mobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notification for the new configuration. Otherwise, it receives the
notification the next time it runs.

Verify that your app correctly handles the new configuration, correctly applying and using the configured options
according to your app’s requirements and design.

Update the AppConnect app configuration

To update the AppConnect app configuration:
1. In the Admin Portal, select Policies & Configs > Configurations.

Update the AppConnect app configuration

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 208

2. Select the your app’s AppConnect app configuration.
3. Click Edit in the right-hand pane.
4. In the App-specific Configurations section, click Add+ to add a key-value pair. To delete a key-value pair,

click the X on the row.
5. Update the key-value pairs as described in Create an AppConnect app configuration.
6. Click Save.
7. Click Yes to confirm.

Push the change to your device immediately, by doing the following steps on the device:
1. Launch Mobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notification for the updated configuration. Otherwise, it receives the
notification the next time it runs.

Verify that your app correctly handles the updated configuration, correctly applying and using the configured
options according to your app’s requirements and design.

Test using AppTunnel
Using MobileIron’s AppTunnel feature, your app can securely tunnel HTTP and HTTPS network connections
from the app to servers behind an organization’s firewall. Your app does not take any special actions related to
tunneling; the AppConnect library, Mobile@Work, and a Standalone Sentry handle tunneling for the app.

You can test the HTTP/S tunneling capability using the provided MobileIron Core and Sentry. Using the Admin
Portal, you configure app-specific AppTunnel settings for Core and Sentry.

Before you begin: Contact MobileIron to provide you with a Standalone Sentry.

To test your app’s use of AppTunnel with HTTP/S tunneling, do these high-level steps:
1. Enable AppTunnel on MobileIron Core.
2. Use an existing certificate or generate a new one.

If you have an existing certificate, see Use an existing certificate.
Otherwise, see Generate a certificate.

3. Configure the Sentry with an AppTunnel service.
4. Configure the AppTunnel service in the AppConnect app configuration.

Enable AppTunnel on MobileIron Core

To enable AppTunnel on MobileIron Core:
1. In the Admin Portal, go to Settings.
2. Select Additional Products > Licensed Products.
3. Select AppConnect For Third-party And In-house Apps if it isn’t already selected.
4. Select AppTunnel For Third-party And In-house Apps if it isn’t already selected.
5. Click Save.

Test using AppTunnel

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 209

Use an existing certificate

Standalone Sentry only allows AppConnect apps on authenticated devices to use AppTunnel with HTTP/S
tunneling. This device authentication involves:
• Providing Standalone Sentry with a root certificate.
• Providing the device with an identity certificate to present to the Standalone Sentry. The identity certificate is

provisioned from the certificate authority (CA) that originated the root certificate.

If you already have an existing certificate, typically a .p12 file, you can use it for both purposes.

To upload the certificate to MobileIron Core:
1. In the Admin Portal, go to Policies & Configs > Configurations.
2. Select Add New > Certificate Enrollment > Single File Identity.
3. For Name, enter any name.

For example: Tunneling Identiity Certificate
4. For Certificate 1, click Browse to select the .p12 or .pfx file of the identity certificate.
5. For Password 1, enter the password for the certificate’s private key, if applicable.
6. Click Save.

Generate a certificate

Standalone Sentry only allows AppConnect apps on authenticated devices to use AppTunnel with HTTP/S
tunneling. This device authentication involves:
• Providing Standalone Sentry with a root certificate.
• Providing the device with an identity cert to present to the Standalone Sentry. The identity cert is provisioned

from the certificate authority (CA) that originated the root certificate.

One convenient way to get these certs iinvolves making MobileIron Core a local certificate authority (CA).

This process involves the following high-level steps:
1. Create a certificate authority for using AppTunnel with HTTP/S tunneling
2. Create a local certificate enrollment setting

Create a certificate authority for using AppTunnel with HTTP/S tunneling

To create a local certificate authority on MobileIron Core to be used in generating certificates:
1. In the Admin Portal, select Services > Local CA.
2. Select Add > Generate Self-Signed Cert
3. Enter a name for Local CA Name.

For example: CA for AppTunnel
4. Set Key Length to 2048.
5. Set the Issuer Name to “CN=Tunneling CA”.
6. Click Generate.

A screen titled Certificate Template displays.
7. Click Save.
8. Click View Certificate next to your new local certificate authority.

Use an existing certificate

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 210

9. Copy all the text in into a text file.
10. Save the text file.

You will upload this text file later as the root certificate for authenticating devices to the Standalone Sentry.

Create a local certificate enrollment setting

After you configure MobileIron Core as a local CA, you create a local certificate enrollment setting. This setting
configures MobileIron Core acting as a local CA to generate identity certificates for the devices to present to
Standalone Sentry.

To create a local certificate enrollment setting:
1. In the Admin Portal, select Policies & Configs > Configurations
2. Select Add New > Certificate Enrollment > Local.

A dialog appears entitled New Local Certificate Enrollment Setting.
3. Enter a descriptive name in the Name field.

For example: Tunneling certificate
4. For Local CA, select the certificate authority you created for AppTunnel.
5. For Subject, enter “cn=tunneling”.

The value can be any string.
6. For Key Length, select 2048.
7. Click Issue Test Certificate.

The issued test certificate displays.
8. Click OK to close the displayed certificate.
9. Click Save to save the local certificate enrollment setting.

Configure the Sentry with an AppTunnel service

To support AppTunnel with HTTP/S tunneling, configure the Sentry with the internal servers that your app uses.

Create a local certificate enrollment setting

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 211

Do the following:
1. In the Admin Portal, go to Services > Sentry.
2. Select Add New > Standalone Sentry.
3. Enter the host name of the Sentry that MobileIron provides you.
4. Select Enable AppTunnel.
5. For Device Authentication Configuration:

If you already had a certificate, select Group Certificate.
If you created a local certificate authority, select Identity Certificate.

6. Click Upload Certificate.
If you already had a certificate, upload it.
If you created a local certificate authority, upload the certificate text file that you created in Create a certificate
authority for using AppTunnel with HTTP/S tunneling. It is the root certificate for authenticating devices to the
Standalone Sentry.

7. In the AppTunnel Configuration section, click + to add a new service.
8. Enter a Service Name.

The service name is any unique identifier for the internal server or servers that your AppConnect app tunnels
to. Entering <ANY> means that the app can reach any of your internal servers.
Service Name examples:
SharePoint
HumanResources

9. For Server Auth, select Pass Through.
This field selects the authentication scheme for the Standalone Sentry to use to authenticate the user to the
internal server. Pass Through means that the Sentry passes through the authentication credentials, such as
the user ID and password (basic authentication) or NTLM, to the internal server.

NOTE: Theother option is Kerberos. Kerberosmeans that the Sentry uses KerberosConstrainedDelegation
(KCD). Thecorporateenvironmentmust be set up for KerberosConstrainedDelegation.

10. Enter a Server List.
Enter a semicolon-separated list of internal server host names or IP addresses and the port that the Sentry
can access.
For example:
sharepoint1.companyname.com:443;sharepoint2.companyname.com:443.
When you enter multiple servers, the Sentry uses a round-robin distribution to load balance the servers. That
is, it sets up the first tunnel with the first internal server, the next with the next internal server, and so on.

NOTE: If you selected<ANY> for the ServiceName, the Server List is not applicable.
11. Select TLS Enabled if the internal servers require SSL.

Although port 443 is typically used for https and requires SSL, the internal server can use other port numbers
requiring SSL.

NOTE: If you selected<ANY> for the ServiceName,donot select TLS Enabled.
12. Do not fill in Server SPN List. It applies only when the Server Auth field is Kerberos.
13. Select Proxy/ATC only if your testing requires that you direct the AppTunnel service traffic through a proxy

server. The proxy server is located behind the firewall and sits between the Sentry and corporate resources.
This deployment allows you to access corporate resources without having to open the ports that Sentry
would otherwise require.
If selected, also configure the Server-side Proxy fields: Proxy Host Name / IP and Proxy Port.

14. Click Save.
15. Click View Certificate on the row with your new Sentry.

This action copies the Sentry’s self-signed certificate that you created to MobileIron Core.

Configure the Sentry with an AppTunnel service

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 212

Configure the AppTunnel service in the AppConnect app configuration

The AppConnect app configuration specifies the AppTunnel services that your app uses. You configured these
services on the Sentry.

To configure AppTunnel with HTTP/S tunneling on an AppConnect app configuration:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select Add New > AppConnect > App Configuration.

NOTE: If youalreadyhavecreatedanAppConnectappconfiguration for your app, select it andclick
Edit in the right-handpane.

3. Enter a name for the AppConnect app configuration if this is a new one.
For example: My App’s App Configuration

4. In the Application field, enter the bundle ID of your app if this is a new app configuration.
For example: com.MyCompany.MySecureApp

5. In the AppTunnel Rules section, click Add+ to add a new AppTunnel configuration.
6. For Sentry, select the Sentry from the drop-down list.
7. For Service, select the service name from the drop-down list.

You created this service name in Configure the Sentry with an AppTunnel service.
8. For the URLWildcard, enter the host name or URL of the internal app server with which the app

communicates. If the Service specified for this server in Configure the Sentry with an AppTunnel service is
<ANY>, the host name can use the wildcard character *.
If a URL request in your app matches the value you enter here, the request uses AppTunnel with HTTP/S
tunneling.
Examples:
sharepoint1.yourcompany.com
*.yourcompanyname.com

9. For Port, enter the port number that the app connects to.
10. For Identity Certificate:

If you already had a certificate, select the certificate setting that you created in Use an existing certificate.
If you created a local certificate authority, select the local certificate enrollment setting that you created in
Create a local certificate enrollment setting. This selection will result in the device receiving an identity
certificate from Core that it will present to the Standalone Sentry for device authentication.

11. Click Save.

If you are creating a new AppConnect app configuration:
1. Select the new AppConnect app configuration.
2. Select Actions > Apply To Label.
3. Select iOS.
4. Click Apply.
5. Click OK.

Push the changes to your device immediately, by doing the following steps on the device:
1. Launch Mobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

Configure the AppTunnel service in the AppConnect app configuration

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 213

If your app is running, Mobile@Work launches and updates the AppConnect app configuration. If your app is not
running, Mobile@Work launches and updates the configuration the next time that you run your app. When
Mobile@Work has updated the configuration, your app will use AppTunnel with HTTP/S tunneling for the URLs
you specified.

Verify that your app’s networking capabilities work as expected.

Test logging messages to the console or files
• Log levels
• Debug code for verbose and debug log levels
• Logging to files
• Log file details
• Configuring logging to files
• Pushing the new log level to the device
• Activating verbose or debug logging on the device
• Sending log files in an email

Log levels

AMobileIron Core administrator can configure Core with the log level for your app. By default, the log level for an
app is ACLOGLEVEL_STATUS.

The administrator has a choice of four log levels as shown in the following table:

Administrator log level for
app

Corresponding ACLogLevel value for app

Status ACLOGLEVEL_STATUS

Info ACLOGLEVEL_INFO

Verbose ACLOGLEVEL_VERBOSE

Debug ACLOGLEVEL_DEBUG

TABLE 49. LOG LEVELS

Debug code for verbose and debug log levels

When the administrator chooses verbose or debug, the administrator also configures a debug code. The debug
code is any string. Mobile@Work requires the device user to enter that string before changing the app’s log level.
This extra security is because messages logged at verbose and debug log levels may contain sensitive data.

Test loggingmessages to the console or files

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 214

Logging to files

The detailed log data for your AppConnect app, and the AppConnect library contained in the app, is logged to the
device’s console. The administrator can choose to write the log data for the app to files on the device in addition
to writing the data to the device’s console.

Log file details

Details regarding the log files for each app are:
• The log files for each app are saved to the following directory:

Apps/<app name>/Library/Application Support/AppConnectLogs
• The log file for each app is named appConnect.log.
• The log file is at most 1 MB.
• When appconnect.log exceeds 1 MB:
1. It is renamed to appconnect.log.<timestamp>.

Example: appconnect.log.2015-05-28 15:13:21
2. Logging begins in a new file named appconnect.log.
3. If 20 log files already exist, the oldest file is deleted.

Configuring logging to files

To log data to a file for an AppConnect app, add a key-value pair to the app’s AppConnect app configuration:
1. In the Admin Portal, select Policies & Configs > Configurations
2. Select the app configuration for the app and click Edit.

If the app does not already have an app configuration, select Add New > AppConnect > App
Configuration. Enter a name and description for the new app configuration and the app’s bundle ID.

3. In App-specific Configurations, click Add+ to add a key-value pair.
4. EnterMI_AC_ENABLE_LOGGING_TO_FILE in the key field.

The key name is case-sensitive.
5. Enter Yes in the value field.
6. Click Add+ to add another key-value pair for the log level.
7. EnterMI_AC_LOG_LEVEL in the key field.

The key name is case-sensitive.
8. Enter one of the following in the value field: error (the default), info, verbose, or debug.

This value is not case-sensitive.
9. If you entered verbose or debug, click Add+ to add another key-value pair.
10. EnterMI_AC_LOG_LEVEL_CODE in the key field.

The key name is case-sensitive.
11. Enter a string for the value.

The device user will enter this string to activate the verbose or debug log level. You can make up any string.
For example, enter 37!8D. For the most security, use a code that is difficult to guess.
The string is case-sensitive.

12. Click Save.

If you created a new AppConnect app configuration, apply the appropriate labels to it.

Logging to files

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 215

Pushing the new log level to the device

Push the change to your device immediately, by doing the following steps on the device:
1. Launch Mobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notification for the new configuration. Otherwise, it receives the
notification the next time it runs. If the log level is verbose or debug, device user interaction is required to
activate the new log level.

Verify that your app correctly handles the new log levels according to your app’s requirements and design.

Activating verbose or debug logging on the device

Log levels verbose and debug require device user interaction. Your app is not notified of these log levels until the
device user activates debug mode in Mobile@Work. This activation switch appears in Mobile@Work’s detailed
status display for your app. The detailed status display for your app is available after you have launched your app
the first time.

The detailed status display for an AppConnect app includes a Debug Mode switch only when you have
configured both of the following in the app’s AppConnect app configuration:
• a log level of verbose or debug
• a debug code

In this case, a detailed status display screen for an AppConnect app shows the Debug Mode switch:

Screenshot from Mobile@Work 9.1

Pushing the new log level to the device

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 216

NOTE: Regarding the keysMI_AC_LOG_LEVELandMI_AC_LOG_LEVEL_CODE:
• They are not included in the configuration count on an app’s detailed status display.
• They are not included in the configuration your app receives through the AppConnect for iOS API.
• If the administrator makes changes to the AppConnect app configuration that involve only these keys, the

AppConnect library does not call the -appConnect:configChangedTo: notification method.

To activate verbose or debug level logging, do the following on the device:
1. Open Mobile@Work on the device.
2. Tap Settings.
3. Tap Check For Updates.
4. Tap Force Device Check-In to make sure that Mobile@Work has received the updated log level.
5. Tap Settings.
6. Tap Secure Apps.
7. Tap the app for which you want verbose or debug level logging.

Screenshot from Mobile@Work 9.1

8. Tap Debug Mode.

Activating verbose or debug logging on the device

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 217

Screenshot from Mobile@Work 9.1

9. Enter the debug code.
10. Tap Next.

Verify that your app correctly handles the verbose and debug levels according to your app’s requirements and
design.

Verbose or debug level logging is activated for 24 hours, after which it is automatically deactivated the next time
that you launch or switch to the app. However, you can deactivate it any time by tapping Debug Mode again.
When deactivated, your app’s log level returns to the default, which is ACLOGLEVEL_STATUS.

Sending log files in an email

You can use Mobile@Work for iOS to send log files to an email address of your choice as a convenient way to
view the files. This feature requires Mobile@Work 9.8 for iOS through the most recently released version as
supported by MobileIron.

Mobile@Work displays the option to send logs on the app’s status details screen, available in Mobile@Work at
Settings > Secure Apps > <app name>. The option is at the bottom of the screen with this text: Send <app
name> Logs.

NOTE: Thedisplayedoption is disabled if theapp’sAppConnectauthorization status is not authorized.

When the option is displayed and enabled, tapping it brings up the list of apps able to share the log files, such as
email apps, only if all of the following are true:
• You included the key-value pairs for the app in its app configuration on MobileIron Core:

- MI_AC_LOG_LEVEL set to debug

Sending log files in an email

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 218

- MI_AC_LOG_LEVEL_CODE set to a chosen string
- MI_AC_ENABLE_LOGGING_TO_FILE set to Yes

• In Mobile@Work in Settings > Secure Apps > <app name>, you have turned on Debug Mode and
entered the string fromMI_AC_LOG_LEVEL_CODE.

Test the app documentation
AMobileIron Core administrator configures Core with information about your app. You provide this information in
documentation about your app. Test whether your app correctly handles what your documentation specifies.

For more information, see Best practices for using the AppConnect for iOS SDK.

Test the appdocumentation

10

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 219

Testing for in-house app developers

l In-house AppConnect app testing overview
l Set up MobileIron Core
l Set up your end-user device
l Test authorization status handling
l Test data loss prevention policy handling
l Test AppConnect configuration change handling
l Test using AppTunnel
l Test logging messages to the console or files
l Test the app documentation

In-house AppConnect app testing overview
Test your app using the instructions in this chapter or the instructions in Testing for third-party app developers
based on the following table:

Your role Testing instructions

In-house app developer whose organization uses MobileIron
Core or Connected Cloud.

This chapter.

In-house app developer whose organization uses MobileIron
Cloud

See Testing for third-party app
developers

Third-party app developer See Testing for third-party app
developers

TABLE 50.WHERE TO FIND THE RIGHT TESTING INSTRUCTIONS

Testing with MobileIron Core as described in this chapter is necessary to verify the AppConnect-related
functionality of your AppConnect app. If your app accesses servers behind a firewall using AppTunnel, a
Standalone Sentry is necessary to verify the AppTunnel feature. All AppConnect apps require Mobile@Work to
interact with Core.

As an in-house AppConnect app developer, contact your organization’s Core administrator to get access to a
Core and Standalone Sentry (if necessary) for testing. You then use a web portal called the Admin Portal to
make configuration changes necessary for testing your app.

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 220

Mobile@Work is available from the Apple App Store.

Set up MobileIron Core
To set up MobileIron Core for testing your AppConnect app, do the following high-level steps:
1. Login to the Admin Portal.
2. Enable AppConnect on MobileIron Core.
3. Create a label for testing your app.
4. Upload your app to MobileIron Core if you use AppConnect.plist.
5. Verify your AppConnect.plist settings.
6. Configure the AppConnect global policy.
7. Create an AppConnect container policy, if necessary.

NOTE: These instructionsare forCore 9.7.0.0.

Login to the Admin Portal

Contact your organization’s MobileIron Core administrator to get the following information about the Core to test
with:
• the URL for accessing the Core’s Admin Portal

The Admin Portal is a web portal for configuring Core. It has the format:
https://<Core domain name>/mifs

• a username and password for accessing the Admin Portal
• a username and password for registering a device with Core

Depending on your Core administrator, this username and password can be the same as the username and
password for accessing the Admin Portal.

To login to Core:
1. Open a browser to the URL for accessing the Core’s Admin Portal.

For example:
https://myCore.mycompany.com/mifs

2. Enter your Username and Password for accessing the Admin Portal.
3. Click Sign In.

You are now in the Admin Portal.

Enable AppConnect on MobileIron Core

To test your AppConnect app, ensure that AppConnect is enabled on MobileIron Core.
1. In the Admin Portal, go to Settings.
2. Select Additional Products > Licensed Products.
3. Select AppConnect For Third-party And In-house Apps if it is not already selected.
4. Click Save.

Set upMobileIronCore

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 221

Create a label for testing your app

MobileIron Core uses labels to associate policies and apps with devices. For testing your app, create a new label
so that your testing impacts only your test device.
1. In the Admin Portal, go to Devices & Users > Labels.
2. Click Add Label.
3. Enter a name for the label.

For example: AppConnect Test
4. Enter a description.

For example: Use only for devices testing new AppConnect apps.
5. Select Manual for the Type.
6. Click Save.

Upload your app to MobileIron Core if you use AppConnect.plist

If your app uses an AppConnect.plist, upload your app to MobileIron Core. Uploading your app causes Core to
create and populate an AppConnect container policy and AppConnect app configuration with the values you
entered in the AppConnect.plist.

To upload your app:
1. In the Admin Portal, select Apps > App Catalog.
2. Select iOS for Platform.
3. Click Add+.

The iOS Add AppWizard starts.
4. Click In-House.
5. Click Browse to select your app’s .ipa file.
6. Click Next.
7. Click Next.
8. Click Finish.

The app is now in Core’s App Catalog. Core has created an AppConnect container policy and AppConnect
app configuration based on your AppConnect.plist.

9. Select the row listing your app.
10. Select Actions > Apply To Label.
11. Select the label that your created in Create a label for testing your app.
12. Click Apply.

Core applies the label to your app. It also applies it to the AppConnect container policy and AppConnect app
configuration.

Verify your AppConnect.plist settings

Once you have uploaded your app to MobileIron Core, verify that the AppConnect.plist settings are correctly
reflected in the AppConnect container policy and AppConnect app configuration.

To verify the AppConnect.plist settings:
1. On the Admin Portal, go to Policies & Configs > Configurations.
2. Select the row with the name of your app and the Setting Type APPCONFIG.

Create a label for testing your app

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 222

3. Click Edit in the right-hand pane.
4. In the App-specific Configurations section, verify the keys and values are what you entered in the

AppConnect.plist.
5. Click Cancel.
6. Select the row with the name of your app and the Setting Type APPPOLICY.
7. Click Edit in the right-hand pane.
8. Verify the data loss prevention settings are what you entered in the AppConnect.plist.
9. Click Cancel.

If any of the key-value pairs or data loss prevention policies are not what you expected, review the contents of
your AppConnect.plist.

Configure the AppConnect global policy

An AppConnect global policy is necessary for your AppConnect app to work properly.

To configure an AppConnect global policy:
1. In the Admin Portal, select Policies & Configs > Policies.
2. Select Add New > AppConnect.
3. Enter a name for the AppConnect global policy.

For example: Test AppConnect Global Policy.
4. For AppConnect, select Enabled.

The display now shows all the AppConnect global policy fields.
5. In the AppConnect Passcode section, for Passcode Type, select Numeric.
6. In the AppConnect Passcode section, select Passcode Is Required For iOS Devices.
7. Click Save.

The dialog box closes and the new AppConnect global policy appears in the list.
8. Select the AppConnect global policy that you just created.
9. Select More Actions > Apply To Label.
10. Select the test label that you created in Create a label for testing your app.
11. Click Apply.
12. Click OK.

NOTE: Donot selectAuthorize in the fieldAppsWithoutAnAppConnectContainer Policy in the section
Data Loss Prevention Policies in theAppConnectglobal policy. Youwill authorize theappwithan
AppConnect container policy instead.

Create an AppConnect container policy, if necessary

An app is authorized only if an AppConnect container policy for the app is present on the device. If you have an
AppConnect.plist in your app, and uploaded the app to MobileIron Core, Core creates an AppConnect container
policy automatically. If you do not have an AppConnect.plist in your app, manually create an AppConnect
container policy.

To create an AppConnect container policy:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select Add New > AppConnect > Container Policy.

Configure the AppConnect global policy

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 223

3. Enter a name for the AppConnect container policy.
For example: My App’s Container Policy

4. In the Application field, enter the bundle ID of your app.
For example: com.MyCompany.MySecureApp

5. Click Save.
The dialog box closes and the new AppConnect container policy appears in the list.

6. Select the AppConnect container policy you just created.
7. Select Actions > Apply To Label.
8. Select the test label that you created in Create a label for testing your app.
9. Click Apply.
10. Click OK.

Set up your end-user device
To set up your end-user device, do the following high-level steps:
1. Set up Mobile@Work on an iOS device.
2. Install your app on the device.
3. Set up the AppConnect passcode on the device.

Set up Mobile@Work on an iOS device

To set up Mobile@Work for iOS on your device:
1. Download and install Mobile@Work from the Apple App Store.
2. Tap the MobileIron app icon to launch Mobile@Work.
3. Enter the user name that the Core administrator gave you for registering your test device.
4. Enter the server name that the Core administrator gave you.

For example: myCore.mycompany.com
5. Enter the password.

Enter the password that the Core administrator gave you for registering your test device.
6. Follow the prompts from Mobile@Work to complete its setup.

Allow Mobile@Work to use the current location.
Install new profiles and certificates when prompted.

Install your app on the device

Install your app on the device in the same way you install any app that you are testing.

Set up the AppConnect passcode on the device

When you run your app for the first time, Mobile@Work prompts you to create the AppConnect passcode. Follow
the steps to create the AppConnect passcode.

Set up your end-user device

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 224

Test authorization status handling
You can make changes to the MobileIron Core configuration to test your app’s handling of the different
authorization statuses: authorized, unauthorized, and retired.

Change the status to authorized or unauthorized

A security policy on MobileIron Core specifies the requirements for a device. If a device is not compliant with a
requirement, the security policy specifies a compliance action. One compliance action is to block AppConnect
apps on the device, which means that the apps become unauthorized.

The list of requirements that can impact authorization is long, but for testing your app, you need to work with only
one requirement. The requirement involves a list of device models that are not allowed to use AppConnect apps.

Therefore, to unauthorize the app on the device:
1. In the Admin Portal, select Policies & Configs > Policies.
2. Select Add New > Security.
3. Enter a name.

For example: AppConnect test security policy
4. Scroll down to the section called Access Control, under For iOS Devices.
5. Select Block Email, AppConnect Apps, And Send Alert For The Following Disallowed Devices.
6. Move the model of your test device to the Disallowed area.
7. Click Save.

Core creates the new security policy.
8. Select the row listing the new security policy.
9. Select More Actions > Apply To Label.
10. Select the test label that you created in Create a label for testing your app.
11. Click Apply.
12. Click OK.

Push the change to your device immediately, by doing the following steps on the device:
1. Launch Mobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notification that it is unauthorized. Otherwise, it receives the notification
the next time it runs.

Verify that your app correctly handles the change to the unauthorized state. Specifically, verify that your app:
• exits any sensitive part of the application.
• stops allowing the user to access sensitive data and views.
• displays the message received in the callback method that explains the authorization status change.
• calls the -authStateApplied:message: method.

To re-authorize the app on the device:
1. In the Admin Portal, select Policies & Configs > Policies.

Test authorization status handling

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 225

2. Select the security policy that you created.
3. Click Edit in the right-hand pane.
4. In the section called Access Control, under For iOS Devices, uncheck Block Email, AppConnect Apps, And

Send Alert For The Following Disallowed Devices.
5. Click Save.

Push the change to your device immediately, by doing the following steps on the device:
1. Launch Mobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notification that it is authorized. Otherwise, it receives the notification the
next time it runs.

Verify that your app correctly handles the change to the authorized state. Specifically, verify that your app:
• allows the user to access sensitive data and views.
• calls the -authStateApplied:message: method.

Change the status to retired

An app is authorized only if an AppConnect container policy for the app is present on the device. If you remove
the AppConnect container policy from the device, the app becomes retired.

To retire the app on the device:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select the AppConnect container policy for your app.
3. Select Actions > Remove From Label.
4. Select the label that you created in Create a label for testing your app.
5. Click Remove.

Push the change to your device immediately, by doing the following steps on the device:
1. Launch Mobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notification that it is retired. Otherwise, it receives the notification the
next time it runs. The message string in the notification is the default unauthorized message:
“Your administrator has not authorized this app.”

Verify that your app correctly handles the change to the retired state. Specifically, verify that your app:
• exits any sensitive part of the application.
• deletes all sensitive data, including any stored authentication credentials, data in files, keychain items,

pasteboard data, and any other persistent storage.
• displays the message received in the callback method that explains the authorization status change.
• calls the -authStateApplied:message: method.

Change the status to retired

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 226

Reauthorize a retired app

A retired app is sometimes re-authorized at a later time.

To reauthorize the retired app on the device:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select the AppConnect container policy for your app.
3. Select Actions > Apply To Label.
4. Select the label that you created in Create a label for testing your app.
5. Click Apply.
6. Click OK.

Push the change to your device immediately, by doing the following steps on the device:
1. Launch Mobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notification that it is authorized. Otherwise, it receives the notification the
next time it runs.

Verify that your app correctly handles the change to the authorized state. Specifically, verify that your app:
• dismisses any user interface that displays that the user is not authorized to use the app.
• allows the user to access sensitive data and views.
• calls the -authStateApplied:message: method.

Test data loss prevention policy handling
The AppConnect container policy for your app specifies its data loss prevention (DLP) policies. In this policy, you
specify whether your app is allowed to:
• copy content to the iOS pasteboard.
• drag and drop content to other apps
• print by using AirPrint, any future iOS printing feature, any current or future third-party libraries or apps that

provide printing capabilities.
• share documents with other apps.

By changing the AppConnect container policy, you can test:
• your app’s behavior for each data loss prevention policy.
• how your app handles changes to the policies in the notification callback methods in the

AppDelegateProtocol.

To change the DLP policies:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select the AppConnect container policy for your app.
3. Click Edit in the right-hand pane.
4. Allow or prohibit features relating to data loss prevention policies as follows:

Reauthorize a retired app

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 227

DLP policy Description

Allow Print Select Allow Print if you want the app to use the device’s print capabilities.

Allow Copy/Paste to Select Allow Copy/Paste to if you want the device user to be able to copy content
from the AppConnect app to other apps.

When you select this option, then select either:
• All Apps

Select All Apps if you want the device user to be able to copy content from the
AppConnect app and paste it into any other app.

• AppConnect Apps
Select AppConnect Apps if you want the device user to be able to copy
content from the AppConnect app and paste it into only other AppConnect
apps.

Allow Drag and Drop Select Allow Drag and Drop if you want the device user to be able to drag content
from the AppConnect app to other apps.

When you select this option, then select either:
• All Apps

Select All Apps if you want the device user to be able to drag content from the
AppConnect app to any other app.

• AppConnect Apps
Select AppConnect Apps if you want the device user to be able to drag
content from the AppConnect app to only other AppConnect apps.

Allow Open In Select Allow Open In if you want the app to be allowed to use the device’s Open In
(document interaction) feature.

When you select this option, then select either:
• All Apps

Select All Apps if you want the app to be able to send documents to any other
app.

• AppConnect Apps
Select AppConnect Apps to allow an AppConnect app to send documents to
only other AppConnect apps.

NOTE: This option results in the openInPolicyproperty having the value
ACOPENINPOICY_WHITELIST. Also, the openInWhitelistproperty contains
the list of currently authorizedAppConnectapps.

• Whitelist
Select Whitelist if you want the app to be able to send documents only to the
apps that you specify.
Enter the bundle ID of each app, one per line, or in a semicolon delimited list.
For example:
com.myAppCo.myApp1
com.myAppCo.myApp2;com.myAppCo.myApp3
The bundle IDs that you enter are case sensitive.

TABLE 51. DLP POLICY DESCRIPTIONS

5. Click Save.

Test data loss prevention policy handling

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 228

6. Click Yes to confirm.

Push the change to your device immediately, by doing the following steps on the device:
1. Launch Mobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notifications for the updated DLP policies. Otherwise, it receives the
notifications the next time it runs.

Verify that your app correctly handles the data loss prevention policy changes, as shown in the following table:

Policy change What to verify

Allow copy/paste to • Verify that the user can cut or copy text, images, or other data to the
pasteboard.

• Where appropriate, verify that any special user interface that offers the
ability to cut or copy data is available and enabled.

Also, verify that your app calls the -pasteboardPolicyApplied:message:
method.

Allow copy/paste to for
AppConnect Apps only

• Verify that the user can cut or copy text, images, or other data to the
pasteboard.

• Where appropriate, verify that any special user interface that offers the
ability to cut or copy data is available and enabled.

• Verify that the user can paste the data from the pasteboard only into
other AppConnect apps.

Also, verify that your app calls the -pasteboardPolicyApplied:message:
method.

Do not allow copy/paste to • Verify that the user cannot to cut or copy text, images, or other data to
the pasteboard.

• Where appropriate, verify that any special user interface that offers the
ability to cut or copy data is removed or disabled.

• Verify your implementation of the callback method
-appConnect:copyAttemptedWhenUnauthorized:.

Also, verify that your app calls the -pasteboardPolicyApplied:message:
method.

Allow drag and drop to only
AppConnect apps

Verify your implementation of the callback method -
appConnectAttemptedDragAndDropToUnauthorizedApp:.

Allow open in for all apps Verify that your app enables user interfaces, if any, that give the user the
option to use Open In.

Also, verify that your app calls the -openInPolicyApplied:message:
method.

TABLE 52.WHAT TO VERIFY WHEN ADLP POLICY CHANGES

Test data loss prevention policy handling

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 229

Policy change What to verify

Allow open in for AppConnect
apps

Verify that:
• your app enables user interfaces, if any, that give the user the option to

use Open In.
• your app calls the -openInPolicyApplied:message: method.
• the -appConnect:openInAttemptedWhenACOpenInPolicyBlocked:

callback method, if implemented, behaves as you expect.

Allow open in for whitelisted
apps

Verify that:
• your app enables user interfaces, if any, that give the user the option to

use Open In.
• your app calls the -openInPolicyApplied:message: method.
• the -appConnect:openInAttemptedWhenACOpenInPolicyBlocked:

callback method, if implemented, behaves as you expect.

Do not allow open in Verify that:
• your app disables user interfaces, if any, that give the user the option to

use Open In.
• your app calls the -openInPolicyApplied:message: method.
• the -appConnect:openInAttemptedWhenACOpenInPolicyBlocked:

callback method, if implemented, behaves as you expect.

Allow print For each part of your app that allows the user to print secure data, verify the
capability is enabled.

Also, verify that your app calls the -printPolicyApplied:message:
method.

Do not allow print For each part of your app that allows the user to print secure data, verify the
capability is removed or disabled.

Also, verify that your app calls the -printPolicyApplied:message:
method.

TABLE 52.WHAT TO VERIFY WHEN ADLP POLICY CHANGES (CONT.)

Test AppConnect configuration change handling
AppConnect app configuration on MobileIron Core specifies key-value pairs for configuring your app. You add,
and edit, key-value pairs using the Admin Portal.

By changing the AppConnect app configuration, you can test your app’s -appConnect:configChangedTo:
method in the AppDelegateProtocol.

If your app includes an AppConnect.plist, and you uploaded your app to Core, Core already has created a
default AppConnect app configuration. Go to Update the AppConnect app configuration.

If your app does not include an AppConnect.plist, create an AppConnect app configuration.

Test AppConnect configuration change handling

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 230

Create an AppConnect app configuration
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select Add New > AppConnect > App Configuration.
3. Enter a name for the AppConnect app configuration.

For example: My App’s App Configuration
4. In the Application field, enter the bundle ID of your app.

For example: com.MyCompany.MySecureApp
5. In the App-specific Configurations section, click Add+ to add a key-value pair.
6. Enter the key-value pairs:

Key The key is any string that the app recognizes as a configurable item.

For example: userid, appURL

Value Enter the value. The value is either:
• a string

The string can have any value that is meaningful to the app. It can also include
one or more of these MobileIron Core variables: $USERID$, $EMAIL$,
$USER_CUSTOM1$, $USER_CUSTOM2$, $USER_CUSTOM3$, $USER_
CUSTOM4$.
If you do not want to provide a value, enter $NULL$. The $NULL$ value tells
the app that the app user will need to provide the value.
Examples:
$USERID$
https://someEnterpriseURL.com

• a Certificate Enrollment or Certificates setting
Certificate Enrollment and Certificate settings that are configured in Policies &
Configs > Configurations appear in the dropdown list. When you choose a
Certificate Enrollment or Certificate setting, Core sends the contents of the
certificate as the value. The contents are base64-encoded.
If the certificate is password-encoded, Core automatically sends another key-
value pair. The key’s name is the string <name of key for certificate>_MI_
CERT_PW. The value is the certificate’s password.

TABLE 53. KEY-VALUE PAIRS IN ANAPPCONNECT APP CONFIGURATION

7. Click Save.
8. Click Yes to confirm.
9. Select the new AppConnect app configuration.
10. Select Actions > Apply To Label.
11. Select the label that you created in Create a label for testing your app.
12. Click Apply.
13. Click OK.

Push the change to your device immediately, by doing the following steps on the device:
1. Launch Mobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

Create anAppConnect app configuration

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 231

If your app is running, it receives the notification for the new configuration. Otherwise, it receives the
notification the next time it runs.

Verify that your app correctly handles the new configuration, correctly applying and using the configured options
according to your app’s requirements and design.

Update the AppConnect app configuration

To update the AppConnect app configuration:
5. Select the your app’s AppConnect app configuration.
6. Click Edit in the right-hand pane.
7. In the App-specific Configurations section, click Add+ to add a key-value pair. To delete a key-value pair,

click the X on the row.
8. Update the key-value pairs as described in Create an AppConnect app configuration.
9. Click Save.
10. Click Yes to confirm.

Push the change to your device immediately, by doing the following steps on the device:
1. Launch Mobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notification for the updated configuration. Otherwise, it receives the
notification the next time it runs.

Verify that your app correctly handles the updated configuration, correctly applying and using the configured
options according to your app’s requirements and design.

Test using AppTunnel
Using MobileIron’s AppTunnel feature, your app can securely tunnel HTTP and HTTPS network connections
from the app to servers behind an organization’s firewall. Your app does not take any special actions related to
tunneling; the AppConnect library, Mobile@Work, and a Standalone Sentry handle tunneling for the app.

You can test the HTTP/S tunneling capability using the provided MobileIron Core and Sentry. Using the Admin
Portal, you configure app-specific AppTunnel settings for Core and Sentry.

Before you begin: Contact your Core administrator to find out the host name or IP address of the Sentry to use
for the AppTunnel feature.

To test your app’s use of AppTunnel with HTTP/S tunneling, do these high-level steps:
1. Enable AppTunnel on MobileIron Core.
2. Use an existing certificate or generate a new one.

If you have an existing certificate, see Use an existing certificate.
Otherwise, see Generate a certificate.

3. Configure the Sentry with an AppTunnel service.

Update the AppConnect app configuration

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 232

4. Configure the AppTunnel service in the AppConnect app configuration.

Enable AppTunnel on MobileIron Core

To enable AppTunnel on MobileIron Core if it isn’t already enabled:
1. In the Admin Portal, go to Settings.
2. Select Additional Products > Licensed Products.
3. Select AppConnect For Third-party And In-house Apps if it isn’t already selected.
4. Select AppTunnel For Third-party And In-house Apps if it isn’t already selected.
5. Click Save.

Use an existing certificate

Standalone Sentry only allows AppConnect apps on authenticated devices to use AppTunnel with HTTP/S
tunneling. This device authentication involves:
• Providing Standalone Sentry with a root certificate.
• Providing the device with an identity cert to present to the Standalone Sentry. The identity cert is provisioned

from the certificate authority (CA) that originated the root certificate.

To upload the certificate to MobileIron Core:
1. In the Admin Portal, go to Policies & Configs > Configurations.
2. Select Add New > Certificate Enrollment > Single File Identity.
3. For Name, enter any name.

For example: Tunneling Identiity Certificate
4. For Certificate 1, click Browse to select the .p12 or .pfx file of the identity certificate.
5. For Password 1, enter the password for the certificate’s private key, if applicable.
6. Click Save.

Generate a certificate

Standalone Sentry only allows AppConnect apps on authenticated devices to use AppTunnel with HTTP/S
tunneling. This device authentication involves:
• Providing Standalone Sentry with a root certificate.
• Providing the device with an identity cert to present to the Standalone Sentry. The identity cert is provisioned

from the certificate authority (CA) that originated the root certificate.

One convenient way to get these certs involves making MobileIron Core a local certificate authority (CA).

This process involves the following high-level steps:
1. Create a certificate authority for using an AppTunnel with HTTP/S tunneling
2. Create a local certificate enrollment setting

Create a certificate authority for using an AppTunnel with HTTP/S tunneling

To create a local certificate authority on MobileIron Core to be used in generating certificates:
1. In the Admin Portal, select Services > Local CA.

Enable AppTunnel onMobileIronCore

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 233

2. Select Add > Generate Self-Signed Cert
3. Enter a name for Local CA Name.

For example: CA for AppTunnel
4. Set Key Length to 2048.
5. Set the Issuer Name to “CN=Tunneling CA”.
6. Click Generate.

A screen titled Certificate Template displays.
7. Click Save.
8. Click View Certificate next to your new local certificate authority.

9. Copy all the text into a text file.
10. Save the text file.

You will upload this text file later as the root certificate for authenticating devices to the Standalone Sentry.

Create a local certificate enrollment setting

After you configure MobileIron Core as a local CA, you create a local certificate enrollment setting. This setting
configures MobileIron Core acting as a local CA to generate identity certificates for the devices to present to

Create a local certificate enrollment setting

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 234

Standalone Sentry.

To create a local certificate enrollment setting:
1. In the Admin Portal, select Policies & Configs > Configurations
2. Select Add New > Certificate Enrollment > Local.

A dialog appears entitled New Local Certificate Enrollment Setting.
3. Enter a descriptive name in the Name field.

For example: Tunneling certificate
4. For Local CA, select the certificate authority you created for AppTunnel.
5. For Subject, enter “cn=tunneling”.

The value can be any string.
6. For Key Length, select 2048.
7. Click Issue Test Certificate.

The issued test certificate displays.
8. Click OK to close the displayed certificate.
9. Click Save to save the local certificate enrollment setting.

Configure the Sentry with an AppTunnel service

To support AppTunnel with HTTP/S tunneling, configure the Sentry with the internal servers that your app uses.

Do the following:
1. In the Admin Portal, go to Services > Sentry.
2. Click the edit icon next to the Sentry that your MobileIron Core Administrator has designated for your

AppTunnel testing.
3. Select Enable AppTunnel if it is not already selected.
4. For Device Authentication Configuration:

If you already had a certificate, select Group Certificate.
If you created a local certificate authority, select Identity Certificate.

5. Click Upload Certificate.
If you already had a certificate, upload it.
If you created a local certificate authority, upload the certificate text file that you created in Create a certificate
authority for using an AppTunnel with HTTP/S tunneling. It is the root certificate for authenticating devices to
the Standalone Sentry.

6. In the AppTunnel Configuration section, click + to add a new service.
7. Enter a Service Name.

The service name is any unique identifier for the internal server or servers that your AppConnect app tunnels
to. Entering <ANY> means that the app can reach any of your internal servers.
Service Name examples:
SharePoint
HumanResources

8. For Server Auth, select Pass Through.
This field selects the authentication scheme for the Standalone Sentry to use to authenticate the user to the
internal server. Pass Through means that the Sentry passes through the authentication credentials, such as
the user ID and password (basic authentication) or NTLM, to the internal server.

NOTE: Theother option is Kerberos. Kerberosmeans that the Sentry uses KerberosConstrainedDelegation
(KCD). Thecorporateenvironmentmust be set up for KerberosConstrainedDelegation.

Configure the Sentry with an AppTunnel service

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 235

9. Enter a Server List.
Enter a semicolon-separated list of internal server host names or IP addresses and the port that the Sentry
can access.
For example:
sharepoint1.companyname.com:443;sharepoint2.companyname.com:443.
When you enter multiple servers, the Sentry uses a round-robin distribution to load balance the servers. That
is, it sets up the first tunnel with the first internal server, the next with the next internal server, and so on.

NOTE: If you selected<ANY> for the ServiceName, the Server List is not applicable.
10. Select TLS Enabled if the internal servers require SSL.

Although port 443 is typically used for https and requires SSL, the internal server can use other port numbers
requiring SSL.

NOTE: If you selected<ANY> for the ServiceName,donot select TLS Enabled.
11. Do not fill in Server SPN List. It applies only when the Server Auth field is Kerberos.
12. Select Proxy/ATC only if your testing requires that you direct the AppTunnel service traffic through a proxy

server. The proxy server is located behind the firewall and sits between the Sentry and corporate resources.
This deployment allows you to access corporate resources without having to open the ports that Sentry
would otherwise require.
If selected, also configure the Server-side Proxy fields: Proxy Host Name / IP and Proxy Port.

13. Click Save.
14. Click View Certificate on the row with your new Sentry.

This action copies the Sentry’s self-signed certificate that you created to Core.

Configure the AppTunnel service in the AppConnect app configuration

The AppConnect app configuration specifies the AppTunnel services that your app uses. You configured these
services on the Sentry.

To configure AppTunnel on an AppConnect app configuration:
1. In the Admin Portal, select Policies & Configs > Configurations.
2. Select Add New > AppConnect > App Configuration.

NOTE: If youalreadyhaveanAppConnectappconfiguration for your app, select it andclick Edit in the
right-handpane.

3. Enter a name for the AppConnect app configuration if this is a new one.
For example: My App’s App Configuration

4. In the Application field, enter the bundle ID of your app if this is a new app configuration.
For example: com.MyCompany.MySecureApp

5. In the AppTunnel Rules section, click Add+ to add a new AppTunnel configuration.
6. For Sentry, select the Sentry from the drop-down list.
7. For Service, select the service name from the drop-down list.

You created this service name in Create a certificate authority for using an AppTunnel with HTTP/S
tunneling.

8. For the URLWildcard, enter the host name or URL of the app server with which the app communicates. If the
Service specified for this server in Configure the Sentry with an AppTunnel service is <ANY>, the host name
can use the wildcard character *.
If a URL request in your app matches the value you enter here, the request uses AppTunnel with HTTP/S
tunneling.
Examples:

Configure the AppTunnel service in the AppConnect app configuration

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 236

sharepoint1.yourcompany.com
*.yourcompanyname.com

9. For Port, enter the port number that the app connects to.
10. For Identity Certificate:

If you already had a certificate, select the certificate setting that you created in Use an existing certificate.
If you created a local certificate authority, select the local certificate enrollment setting that you created in
Create a local certificate enrollment setting. This selection will result in the device receiving an identity
certificate from Core that it will present to the Standalone Sentry for device authentication.

11. Click Save.

If you are creating a new AppConnect app configuration:
1. Select the new AppConnect app configuration.
2. Select Actions > Apply To Label.
3. Select the label that you created in Create a label for testing your app.
4. Click Apply.
5. Click OK.

Push the change to your device immediately, by doing the following steps on the device:
1. Launch Mobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If app is running, Mobile@Work launches and updates the AppConnect app configuration. If your app is not
running, Mobile@Work launches and updates the configuration the next time that you run your app. When
Mobile@Work has updated the configuration, your app will use AppTunnel with HTTP/S tunneling for the URLs
you specified.

Verify that your app’s networking capabilities work as expected.

Test logging messages to the console or files
• Log levels
• Debug code for verbose and debug log levels
• Logging to files
• Log file details
• Configuring logging to files
• Pushing the new log level to the device
• Activating verbose or debug logging on the device
• Sending log files in an email

Log levels

AMobileIron Core administrator can configure Core with the log level for your app. By default, the log level for an
app is ACLOGLEVEL_STATUS.

The administrator has a choice of four log levels as shown in the following table:

Test loggingmessages to the console or files

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 237

:

Administrator log level for
app

Corresponding ACLogLevel value for app

Status ACLOGLEVEL_STATUS

Info ACLOGLEVEL_INFO

Verbose ACLOGLEVEL_VERBOSE

Debug ACLOGLEVEL_DEBUG

TABLE 54. LOG LEVELS

Debug code for verbose and debug log levels

When the administrator chooses verbose or debug, the administrator also configures a debug code. The debug
code is any string. Mobile@Work requires the device user to enter that string before changing the app’s log level.
This extra security is because messages logged at verbose and debug log levels may contain sensitive data.

Logging to files

The detailed log data for your AppConnect app, and the AppConnect library contained in the app, is logged to the
device’s console. The administrator can choose to write the log data for the app to files on the device in addition
to writing the data to the device’s console.

Log file details

Details regarding the log files for each app are:
1. The log files for each app are saved to the following directory:

Apps/<app name>/Library/Application Support/AppConnectLogs
• The log file for each app is named appConnect.log.
• The log file is at most 1 MB.
• When appconnect.log exceeds 1 MB:
1. It is renamed to appconnect.log.<timestamp>.

Example: appconnect.log.2015-05-28 15:13:21
2. Logging begins in a new file named appconnect.log.
3. If 20 log files already exist, the oldest file is deleted.

Configuring logging to files

To log data to a file for an AppConnect app, add a key-value pair to the app’s AppConnect app configuration:
1. In the Admin Portal, select Policies & Configs > Configurations
2. Select the app configuration for the app and click Edit.

If the app does not already have an app configuration, select Add New > AppConnect > App
Configuration. Enter a name and description for the new app configuration and the app’s bundle ID.

3. In App-specific Configurations, click Add+ to add a key-value pair.

Debug code for verbose anddebug log levels

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 238

4. EnterMI_AC_ENABLE_LOGGING_TO_FILE in the key field.
The key name is case-sensitive.

5. Enter Yes in the value field.
6. Click Add+ to add another key-value pair for the log level.
7. EnterMI_AC_LOG_LEVEL in the key field.

The key name is case-sensitive.
8. Enter one of the following in the value field: error (the default), info, verbose, or debug.

This value is not case-sensitive.
9. If you entered verbose or debug, click Add+ to add another key-value pair.
10. EnterMI_AC_LOG_LEVEL_CODE in the key field.

The key name is case-sensitive.
11. Enter a string for the value.

The device user will enter this string to activate the verbose or debug log level. You can make up any string.
For example, enter 37!8D. For the most security, use a code that is difficult to guess.
The string is case-sensitive.

12. Click Save.

If you created a new AppConnect app configuration, apply the appropriate labels to it.

Pushing the new log level to the device

Push the change to your device immediately, by doing the following steps on the device:
1. Launch Mobile@Work.
2. Tap Settings.
3. Tap Check for Updates.
4. Tap Force Device Check-in.

If your app is running, it receives the notification for the new configuration. Otherwise, it receives the
notification the next time it runs. If the log level is verbose or debug, device user interaction is required to
activate the new log level.

Verify that your app correctly handles the new log levels according to your app’s requirements and design.

Activating verbose or debug logging on the device

Log levels verbose and debug require device user interaction. Your app is not notified of these log levels until the
device user activates debug mode in Mobile@Work. This activation switch appears in Mobile@Work’s detailed
status display for your app. The detailed status display for your app is available after you have launched your app
the first time.

The detailed status display for an AppConnect app includes a Debug Mode switch only when you have
configured both of the following in the app’s AppConnect app configuration:
• a log level of verbose or debug
• a debug code

In this case, a detailed status display screen for an AppConnect app shows the Debug Mode switch:

Pushing the new log level to the device

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 239

Screenshot from Mobile@Work 9.1

NOTE: Regarding the keysMI_AC_LOG_LEVELandMI_AC_LOG_LEVEL_CODE:
• They are not included in the configuration count on an app’s detailed status display.
• They are not included in the configuration your app receives through the AppConnect for iOS API.
• If the administrator makes changes to the AppConnect app configuration that involve only these keys, the

AppConnect library does not call the -appConnect:configChangedTo: notification method.

To activate verbose or debug level logging, do the following on the device:
1. Open Mobile@Work on the device.
2. Tap Settings.
3. Tap Check For Updates.
4. Tap Force Device Check-In to make sure that Mobile@Work has received the updated log level.
5. Tap Settings.
6. Tap Secure Apps.
7. Tap the app for which you want verbose or debug level logging.

Activating verbose or debug logging on the device

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 240

Screenshot from Mobile@Work 9.1

8. Tap Debug Mode.

Screenshot from Mobile@Work 9.1

9. Enter the debug code.
10. Tap Next.

Activating verbose or debug logging on the device

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 241

Verify that your app correctly handles the verbose and debug levels according to your app’s requirements and
design.

Verbose or debug level logging is activated for 24 hours, after which it is automatically deactivated the next time
that you launch or switch to the app. However, you can deactivate it any time by tapping Debug Mode again.
When deactivated, your app’s log level returns to the default, which is ACLOGLEVEL_STATUS.

Sending log files in an email

You can use Mobile@Work for iOS to send log files to an email address of your choice as a convenient way to
view the files.. This feature requires Mobile@Work 9.8 for iOS through the most recently released version as
supported by MobileIron.

Mobile@Work displays the option to send logs on the app’s status details screen, available in Mobile@Work at
Settings > Secure Apps > <app name>. The option is at the bottom of the screen with this text: Send <app
name> Logs.

NOTE: Thedisplayedoption is disabled if theapp’sAppConnectauthorization status is not authorized.

When the option is displayed and enabled, tapping it brings up the list of apps able to share the log files, such as
email apps, only if all of the following are true:
• You included the key-value pairs for the app in its app configuration on MobileIron Core:

- MI_AC_LOG_LEVEL set to debug
- MI_AC_LOG_LEVEL_CODE set to a chosen string
- MI_AC_ENABLE_LOGGING_TO_FILE set to Yes

• In Mobile@Work in Settings > Secure Apps > <app name>, you have turned on Debug Mode and
entered the string fromMI_AC_LOG_LEVEL_CODE.

Test the app documentation
Once your app is ready for in-house distribution, a MobileIron Core administrator configures Core with
information about your app. You provide this information in documentation about your app. Test whether your
app correctly handles what your documentation specifies.

For more information, see Best practices for using the AppConnect for iOS SDK.

Sending log files in an email

11

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 242

Derived credential handling

l Derived credential handling overview
l Derived credential header files
l Before adding derived credentials code
l Sending derived credentials to the MobileIron client

Derived credential handling overview
Only use the APIs relating to derived credentials if you are developing an app that obtains derived credentials
from a derived credential provider and delivers the credentials to the MobileIron client.

A derived credential is derived from the primary credential on a user’s smart card and stored on the user’s mobile
device. The derived credential contains X.509 public key identity certificates derived from the primary
credential’s identity certificates.

The APIs allow your app to:
• Send a derived credential to the MobileIron client.
• Receive a request from the MobileIron client to get a new derived credential and deliver it to the MobileIron

client.

Besides implementing this derived credential capability, your app must implement the necessary AppConnect
APIs to behave as an AppConnect app.

Regarding derived credentials, when your app decides to get a derived credential, such as due to user
interaction, your app does the following high-level steps:
1. Makes sure that the MobileIron client is installed and that it supports derived credentials.
2. Makes sure that sending derived credentials to the MobileIron client is currently allowed.
3. Obtains a derived credential from the derived credential provider.
4. Indicate which certificate in the derived credential is for what kind of use by AppConnect apps. The uses are

authentication, signing, and encryption.
5. Sends the derived credential to the MobileIron client.

After the MobileIron client has the derived credential, AppConnect apps on the device can use the certificates
that comprise the derived credential. Whether the AppConnect apps use the derived credential’s certificates or
other certificates depends on configuration settings on the MobileIron server.

Also, at any time, the MobileIron client can request a new derived credential from your app. At that time, your app
repeats the above steps.

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 243

Derived credential header files
The following header files in the AppConnect framework contain the methods, properties, and enumerations you
use to deliver derived credentials to the MobileIron client.

Header file Description

ACDerivedCredential.h Defines the ACDerivedCredential object that contains the
certificates that comprise the derived credential. Your app
sends an ACDerivedCredential object to the MobileIron client.

AppConnectDerivedCredentialService.h Defines the ACDerivedCredentialService object which you use
to:
• Check if the MobileIron client is installed and supports

derived credentials.
• Check if sending derived credentials is currently allowed.
• Inform the MobileIron client about the custom URL scheme

to use to communicate to your app.
• Send a derived credential to the MobileIron client.

TABLE 55. DERIVED CREDENTIAL HEADER FILES

Before adding derived credentials code
Before adding code to your app to send derived credentials to the MobileIron client, do the following tasks:
• Making your app an AppConnect app
• Declaring the appConnectdc URL scheme as allowed
• Registering as a handler of a URL scheme you define

Making your app an AppConnect app

Your app must be an AppConnect app and therefore must implement the AppConnect APIs to handle:
• AppConnect authorization
• AppConnect data loss prevention policies if applicable
• Dual mode behavior
• App-specific configuration if applicable

Therefore, follow the instructions in:
• Getting started tasks to set up your app to use the AppConnect library.
• Derived credential handling to handle AppConnect app authorization, data loss prevention policies, and app-

specific configuration
• Developing third-party dual-mode apps to make your app choose to behave in AppConnect mode (managed

by MobileIron) or non-AppConnect mode.

Derived credential header files

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 244

Declaring the appConnectdc URL scheme as allowed

Declare the appconnectdc URL scheme in your app’s Info.plist as an allowed URL scheme. Your app’s instance
of the AppConnect library uses the appconnectdc URL scheme to communicate with the MobileIron client.

To allow the appconnectdc URL scheme, add an item to the key called LSApplicationQueriesSchemes, which
you already created to contain an item for the appconnect URL scheme. Add an item named appconnectdc.

The following screenshot from Xcode 7.3.1 illustrates the appconnectdc and appconnect items.

Registering as a handler of a URL scheme you define

The MobileIron client uses a custom URL scheme that your app defines to communicate with your app about
derived credentials. Specifically, the MobileIron client can send a request to your app to create a new derived
credential. The scheme the MobileIron client uses is:
<URL scheme you define>://new

Register your URL scheme by modifying the app’s Info.plist, illustrated in the following Xcode 7.3.1 screenshot.

Declaring the appConnectdc URL schemeas allowed

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 245

Sending derived credentials to the MobileIron client
Sending a derived credential to the MobileIron client requires the following tasks in your app:
• Handling the custom URL scheme in your app delegate
• Checking if the MobileIron client supports derived credentials
• Checking if sending credentials to MobileIron client is currently allowed
• Getting a derived credential
• Preparing a certificates array
• Preparing an ACDerivedCredential object
• Creating an ACDervicedCredentialService object
• Sending the certificates to the MobileIron client
• Handling secure services becoming available

Handling the custom URL scheme in your app delegate

You registered as a handler of a custom URL scheme that the MobileIron client uses to send your app derived
credential requests. How to register as a handler is described in Registering as a handler of a URL scheme you
define.

Add code to handle the custom URL scheme in your application delegate.

Objective-C example

-(BOOL)application:(UIApplication *)app openURL:(NSURL *) url
options:(NSDictionary<NSString*,id> *) options {

// If the URL is your app’s custom URL scheme for receiving derived credential
// communications from the MobileIron client (in this example “myappderivedcredential”),
// and the command is “new”...

if ([url.scheme isEqualToString:@"myappderivedcredential"]
&& [url.host isEqualToString:@"new"]) {

// begin the logic for creating a new derived credential.
}

}

Swift example

Sending derived credentials to theMobileIron client

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 246

func application(_ app: UIApplication, open url: URL,
options: [UIApplicationOpenURLOptionsKey : Any] = [:]) -> Bool {

// If the URL is your app’s custom URL scheme for receiving derived credential
// communications from the MobileIron client (in this example “myappderivedcredential”),
// and the command is “new”...

if (url.scheme == "myappderivedcredential" && url.host == "new") {

// begin the logic for creating a new derived credential.
}

return true
}

Checking if the MobileIron client supports derived credentials

Before beginning the logic to create a derived credential and send it to the MobileIron client, check whether a
MobileIron client is installed that supports derived credentials.

Header file: ACDerivedCredentialService.h

Method:
+(ACDerivedCredentialServiceSupport)derivedCredentialSupport;

In a typical call flow, the app does not call this method until:
• after the app is authorized (the authState property on the AppConnect object is ACAUTHSTATE_AUTHORIZED)
• after the app is in AppConnect Mode (the managedPolicy property on the AppConnect object is

ACMANAGEDPOLICY_MANAGED)

Return values:

The method returns a value from the enumeration ACDerivedCredentialServiceSupport:

typedef NS_ENUM (NSInteger, ACDerivedCredentialServiceSupport) {
ACDerivedCredentialServiceSupportPresent = 0,
ACDerivedCredentialServiceSupportOldClient,
ACDerivedCredentialServiceSupportMissingClient

}

Example:

ACDerivedCredentialServiceSupport supportStatus =
[ACDerivedCredentialService derivedCredentialSupport];

if (ACDerivedCredentialServiceSupportOldClient == supportStatus)
{

// Notify user to upgrade MobileIron client app to latest version.
// The version running does not support derived credentials.

}
else if (ACDerivedCredentialServiceSupportMissingClient == supportStatus)

Checking if theMobileIron client supports derived credentials

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 247

{
// Typically, this case won’t happen if the app does not call +derivedCredentialSupport
// until after the app is in AppConnect mode.

}
else
{

// Continue with code to check if sending credentials to the MobileIron client
// is currently allowed.

}

Checking if sending credentials to MobileIron client is currently allowed

Before your app obtains derived credentials and prepares them for delivery to the MobileIron client, make sure
sending credentials is currently allowed. It is allowed only if secure services are available and the MobileIron
client supports receiving derived credentials. At this point, you have already verified that the MobileIron client
supports derived credentials, but secure services are not necessarily available.

Header file: ACDerivedCredentialService.h

Method:
+(BOOL) canSendCredential;

Return values:

Returns YES if a MobileIron client that supports derived credentials is installed and secure services are available.
Otherwise, returns NO.

Example:

if (![ACDerivedCredentialService canSendCredential])
{

// Notify user that derived credentials cannot be obtained at this time.
// When secure services become available, the AppConnect library calls
// the notification method -appConnect:secureServicesAvailabilityChangedTo:.
// At that time, the app can continue with the logic to get derived credentials
// and deliver them to the MobileIron client.

}
else
{

// Continue with code to get derived credential.
}

Getting a derived credential

Your app gets a derived credential only after both of the following are true:
• Your app has determined that derived credentials are supported (+derivedCredentialSupport)
• Your app has determined that it is allowed to send derived credentials to the MobileIron client at this time

(+canSendCredential)

Your app gets the certificates that comprise the derived credential according to its own requirements.

Checking if sending credentials toMobileIron client is currently allowed

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 248

Preparing a certificates array

After your app has obtained the certificates that comprise the derived credential, prepare an NSArray of the
certificates. Each array entry is an NSDictionary object. The following table describes each entry in the
NSDictionary object.

Entry Key Value

The
certificate
tag

ACDerivedCredentialPayloadKeyTag An NSString object

The value describes the expected use of the
certificate. The MobileIron client uses the
value to determine which certificates to
deliver to an AppConnect app.

The value is one of the certificate tags
defined in ACDerivedCredential.h:
• ACDerivedCredentialTagAuthentication
• ACDerivedCredentialTagSigning
• ACDerivedCredentialTagEncryption
• ACDerivedCredentialTagEscrow

You can use each value in only one
NSDictionary object in the NSArray. That is,
you can associate each value with only one
certificate in the derived credential.

The
certificate
contents

ACDerivedCredentialPayloadKeyCert An NSData object

The object contains the DER-encoded
certificate data.

The
certificate’s
private key

ACDerivedCredentialPayloadKeyPrivateKey An NSData object

The object contains the DER-encoded
private key of the certificate. The private key
must be in PKCS #8 format.

TABLE 56. ENTRIES IN THENSDICTIONARY OBJECT OF A CERTIFICATE ARRAY ENTRY

Header file: ACDerivedCredential.h -- contains definitions of constants

Example:

#import <AppConnect/ACDerivedCredential.h>

NSData *certificateData; // contains DER-encoded certificate data

Preparing a certificates array

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 249

NSData *privateKeyData; // contains DER-encoded private key, in PKCS #8 format.

// Insert code that gets the certificate used for authentication and its private key.

NSDictionary *authCertificatePackage = @{
ACDerivedCredentialPayloadKeyTag : ACDerivedCredentialTagAuthentication,
ACDerivedCredentialPayloadKeyCert : certificateData,
ACDerivedCredentialPayloadKeyPrivateKey : privateKeyData

};

// Insert similar code for populating NSDictionary objects with certificates to be used for
// encryption or signing. The number of NSDictionary objects you populate depends on the
// number of different uses for certificates your app supports.

// Place the NSDictionary entries into an array
NSArray *certificatesArray =

@[authCertificatePackage, encryptCertificatePackage, signingCertificatePackage];

Preparing an ACDerivedCredential object

After you have prepared the certificates array, create and initialize an ACDerivedCredential object.

Header file: ACDerivedCredential.h

Method:

-(instancetype)initWithName:(NSString *)name
serialNumber:(NSString *)serialNumber
expirationDate:(NSDate *)expirationDate
certificates:(NSArray *)certificates NS_DESIGNATED_INITIALIZER;

Parameter Description

name A human readable name for this derived credential payload. The MobileIron
client displays this name with the derived credential information.

serialNumber A unique identifier for the derived credential. Typically, this serial number is
provided to your app by your derived credential provider.

expirationDate The expiration date of the derived credential. This date is not necessarily the
same as the expiration date of each certificate in the derived credential. It is the
responsibility of the derived credential provider to enforce this expiration date
according to the provider’s requirements.

certificates The array of certificates that comprise the derived credential.

TABLE 57. PARAMETERS FOR -INITWITHNAME:SERIALNUMBER:EXPIRATIONDATE:CERTIFICATES:

Return values:
• Returns an ACDerivedCredential object if no errors occur.
• Returns nil if:

Preparing anACDerivedCredential object

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 250

- the name or serialNumber parameter is nil or an empty string
- the expirationDate parameter is nil.
- the certificates parameter is nil or an empty array

NOTE: TheAppConnect librarywithin theapp logsanerror to thedevice’s consolewhen thismethod
returns nil.

Example:

ACDerivedCredential *derivedCredential =
[[ACDerivedCredential alloc] initWithName:@"Derived Credential Name"

serialNumber:@"123-4567-8910"
expirationDate:expirationDate
certificates:certificatesArray];

Creating an ACDervicedCredentialService object

Create an ACDerivedCredentialService object for communicating with the MobileIron client.

Header file: ACDerivedCredentialService.h

Method:

-(instancetype)initWithBrand:(NSString *)brand
callbackScheme:(NSString *)callbackScheme NS_DESIGNATED_INITIALIZER;

Parameter Description

brand The name of the derived credentials provider.

callbackScheme The custom URL scheme that your app defines for the MobileIron client to
communicate with your app about derived credentials.

TABLE 58. PARAMETERS FOR -INITWITHBRAND:CALLBACKSCHEME:

Return values:
• Returns an ACDerivedCredentialService object if no errors occur
• Returns nil if either of the following are true:

- any parameter is nil or an empty string
- the MobileIron client does not support derived credentials

NOTE: TheAppConnect librarywithin theapp logsanerror to thedevice’s consolewhen thismethod
returns nil.

Example:

ACDerivedCredentialService *derivedCredentialService =
[[ACDerivedCredentialService alloc] initWithBrand:@"Derived Credential Provider Name"

callbackScheme:@"MyCustomDcScheme"];

Creating anACDervicedCredentialService object

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 251

Sending the certificates to the MobileIron client

After creating the ACDerivedCredential and ACDerivedCredentialService objects, send the derived credential to
the MobileIron client.

Header file: ACDerivedCredentialService.h

Method:

-(BOOL)sendDerivedCredential:(ACDerivedCredential*)derivedCredential withError:(NSError **)error;

Parameter Description

derivedCredential The ACDerivedCredential object you created and initialized.

error A reference to an NSError pointer.

If an error occurs, the method returns NO and updates the pointer to point to an
NSError object describing the problem. Possible values of the NSError object’s
code property are defined in the enumeration
ACDerivedCredentialServiceErrorCode.

Although allowed, passing NULL for this parameter is not recommended, since the
app’s error handling would be limited.

TABLE 59. PARAMETERS FOR -SENDDERIVEDCREDENTIAL:WITHERROR:

Return values:

Returns YES if the certificates have been sent to the MobileIron client. Otherwise, returns NO.

NOTE: When the return value is YES, theMobileIronclient is launched.Control does notautomatically
return to theapp. Therefore, a typical behavior in this case is tochange toa “home” screen that
offers options forwhat thedeviceuser candonext.

Example:

NSError *error = nil;
BOOL credentialSent = [derivedCredentialService sendDerivedCredential:derivedCredential

withError:&error];

if (!credentialSent) {
// Sending the derived credential to the MobileIron client failed.
// Examine the error and handle appropriately, notifying the user as necessary.

// If the error is ACDerivedCredentialErrorServiceUnavailable, notify the user
// and wait for the callback method -appConnect:secureServicesAvailabilityChangedTo:
// to indicate that secure services are available before trying again.

}
else {

Sending the certificates to theMobileIron client

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 252

// The derived credential was successfully sent to the MobileIron client.
}

Handling secure services becoming available

Sending derived credentials to the MobileIron client requires AppConnect’s secure services to be available. Your
app calls the method +canSendCredential, which checks if secure services are available and the MobileIron
client supports receiving them.

If +canSendCredential returns YES, your app proceeds with getting and delivering derived credentials. However,
secure services could become unavailable before you deliver the derived credentials to the MobileIron client. In
that case, your app must take the appropriate actions. If +canSendCredential returns NO, your app notifies the
user and must wait for secure services to become available.

Therefore, implement the notification method -appConnect:secureServicesAvailabilityChangedTo: in the
AppConnectDelegate protocol, defined in AppConnect.h:

-(void) appConnect:(AppConnect *)appConnect secureServicesAvailabilityChangedTo:
(ACSecureServicesAvailability)secureServicesAvailability;

Example:

-(void)appConnect:(AppConnect *)appConnect secureServicesAvailabilityChangedTo:
(ACSecureServicesAvailability)secureServicesAvailability {

if (ACSECURESERVICESAVAILABILITY_AVAILABLE == secureServicesAvailability) {
// Notify the user as necessary, according to your app state.
// The app can now proceed to logic for getting and delivering derived credentials.

}
else {

// Secure services are not available.
// The app cannot deliver derived credentials to the MobileIron client.
// Notify the user as necessary, and change your app state appropriately.

}
}

Handling secure services becoming available

12

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 253

AppConnect for iOS SDK revision history

l AppConnect 4.8.0 for iOS SDK revision history
l AppConnect 4.7.0 for iOS SDK revision history
l AppConnect 4.6.0 for iOS SDK revision history
l AppConnect 4.5.3 for iOS SDK revision history
l AppConnect 4.5.2 for iOS SDK revision history
l AppConnect 4.5.1 for iOS SDK revision history
l AppConnect 4.5.0 for iOS SDK revision history
l AppConnect 4.4.2 for iOS SDK revision history
l AppConnect 4.4.1 for iOS SDK revision history
l AppConnect 4.4.0 for iOS SDK revision history
l AppConnect 4.3.1 for iOS SDK revision history
l AppConnect 4.3.0 for iOS SDK revision history
l AppConnect 4.2.1 for iOS SDK revision history
l AppConnect 4.2 for iOS SDK revision history
l AppConnect 4.1.1 for iOS SDK revision history
l AppConnect 4.1 for iOS SDK revision history
l AppConnect 4.0 for iOS SDK revision history
l AppConnect 3.5 for iOS SDK revision history
l Releases prior to AppConnect 3.5 for iOS SDK revision history

AppConnect 4.8.0 for iOS SDK revision history
This release provides the following:

l New features and enhancements summary
l Resolved issues
l Known issues
l Limitations

New features and enhancements summary
This release includes the following new features and enhancements:

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 254

l Distribution using XCFrameworks: The AppConnect SDK is distributed using XCFramework. As a
result, the SDK has the following updates:

o The sample apps are updated to use the new SDK.

o The test apps are updated to use the new SDK.

o Removed the AppConnectResources.bundle.

o Removed the post_embed_actions.sh shell script.

o AppConnect.framework is replaced with AppConnect.xcframework.

o AppConnectExtension.framework is replaced with AppConnectExtension.xcframework.
Actions and references for AppConnectResources.bundle and post_embed_actions.sh shell scrip are
removed from the following sections -

o AppConnect for iOS SDK contents

o SDK 3.1 through 3.5 upgrade task list

o Add AppConnect files and settings to your Xcode project
See Apple documentation on XCFrameworks integration:
https://help.apple.com/xcode/mac/11.4/#/dev51a648b07

l Certificate-based authentication for AppConnect apps that use WKWebView: Adding the
AppConnect 4.8.0 SDK to your apps that use WKWebView allows the apps to authenticate to enterprise
services using identity certificates. Previously, only AppConnect apps using UIWebView were
supported.
Set up certificate-based authentication using the keys MI_AC_CLIENT_CERT_# and MI_AC_CLIENT_
CERT_#_RULE. For information about configuring certificate-based authentication, see "Setting up
certificate authentication from an AppConnect app" in theMobileIron Core AppConnect Guide or the
MobileIron Cloud AppConnect Guide.

Resolved issues

This release includes the following new resolved issues:

l AP-5623: Fixed crash with [UIPasteboard valuesForPasteboardType:inItemSet:] and [UIPasteboard
dataForPasteboardType:inItemSet:] calls when Copy/Paste policy is limited to AppConnect apps only
and input itemSet parameter contains indexes outside of array of pasteboard items.

l AP-5319: Improved the storing of secure data in the keychain by limiting access to the keychain content
only when the device is unlocked.

Known issues

This release includes the following new known issues:

Resolved issues

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 255

l AP-5702:Wrapped applications will not use PasscodeExtension for user authentication on iOS 15. They
will behave as regular AppConnect apps - flip to the client app when device user is asked for password.

l AP-5614: On iOS 12.x and 13.x, apps do not go into an UnAuthorized state after compliance actions are
triggered.

Limitations

This release includes the following new limitations:

l AP-5653: If an AppConnect app with MI_AC_ACCESS_GROUP key in its Info.plist file is retired, the app
must be relaunched or the checkin time interval must expire in order to switch from Retired to
Authenticated state.

l APG-1200: The AppConnect SDK only supports apps using the 'UIKit App Delegate' Life Cycle. Apps
using the newer 'SwiftUI App' LIfe Cycle are not supported, and AppConnect will fail to initialize.

AppConnect 4.7.0 for iOS SDK revision history
This release provides the following:

l New features and enhancements summary
l Resolved issues
l Known issues
l Limitations

New features and enhancements summary
This release includes the following new features and enhancements:

l Avoid pasteboard notifications: To avoid pasteboard notifications on users' devices when using
AppConnect apps, set up an App Group for your AppConnect apps. Setting up an App Group reduces
flipping between the AppConnect app and the MobileIron client and avoids pasteboard notifications. For
more information, see Optional: Avoiding pasteboard notifications.

Resolved issues

This release includes the following new resolved issues:

l AP-5578: Fixed an issue due to which the check-in request failed when users were prompted to
authenticate.

Known issues

This release includes the following new known issues:

Limitations

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 256

l AP-5557: On iOS 12 devices, users are not required to authenticate when using AppConnect 4.7.0
apps. This is an intermittent issue.
Workaround: Upgrade to iOS 13 through the latest version as supported by MobileIron.

l AP-5567: The following issue is seen if the AppConnect Global policy is applied to some AppConnect
apps and the AppConnect Container policy is applied to other AppConnect apps, and Authorize is not
checked for the option Apps without an AppConnect container policy. AppConnect apps that are
packaged using the 4.7.0 SDK and do not have a container policy will not go into an unauthorized state
till the next check in.
Workaround: Shorten the check in interval to reduce the time interval where the unauthorized apps
continue to work until the next checkin.

l AP-5484: Instead of displaying a failed to authenticate error message on the MobileIron client, users are
asked to contact their IT administrator.

l AP-5482: When users cancel Touch ID authentication, they are shown a 'Contact Admin' error message
instead of a 'Failed to authenticate' user error message.

Limitations

This release includes the following new limitations:

l AP-5497: On iOS 12 or earlier versions as supported by MobileIron, device users are prompted for
biometric authentication more than once.

l AP-5504: To accommodate pasteboard changes in iOS 14, users cannot copy from AppConnect 4.6
(previous versions of AppConnect apps as supported by MobileIron) apps to AppConnect 4.7 apps if the
Data Loss Prevention policy only allows copy/paste to other AppConnect apps. Copy/paste works when
copying from 4.7 to older apps or when the policy is set to allow all apps.

l AP-5563: Since the Pasteboard is used for sending logs, notifications are seen when sending
AppConnect app logs.

l AP-5559: If an AppConnect app is set up to avoid pasteboard notifications (MI_AC_ACCESS_GROUP
key in added to the app's Info.plist file), sometimes the MobileIron client may log out while the user is still
using the AppConnect app. As a result, users are prompted to authentication when they activate the app.

l AP-5553: App status is not updated from pending to authorized state till the next app check in.

AppConnect 4.6.0 for iOS SDK revision history
This release provides the following:

l New features summary
l Resolved issues

Limitations

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 257

New features summary
This release includes the following new features and enhancements:

l Improvements to memory consumption: Secure File I/O APIs have been optimized to decrease
memory consumption while processing large files.

l Two SDK variants: Due to Apple deprecating the UIWebView class, the AppConnect for iOS SDK is
available in two variants: one with UIWebView andWKWebView support, and another with WKWebView
support, but no UIWebView support. The AppConnect SDK without UIWebView support is provided for
apps that will be submitted to the App Store.
See AppConnect for iOS SDK variants and AppConnect for iOS SDK contents.

l Support for UIScene: A new method -sceneWillConnectToSessionWithOptions: is provided to support
apps using UIScene. If your application supports UIScene, call the method
-sceneWillConnectToSessionWithOptions: when initializing the AppConnect library.
See Initialize the AppConnect library and UIScene support.

Resolved issues

This release includes the following new resolved issues:

l AP-5422: Fixed issue with tunneled requests authentication when app implements
URLSession:didReceiveChallenge:completionHandler:method of the URLSessionDelegate protocol.

l AP-5328: Fixed an issue where AppConnect apps flipped to the MobileIron client app for password
authentication. Now the passcode prompt is seen within the wrapped app.

AppConnect 4.5.3 for iOS SDK revision history
This release provides the following:

l Resolved issues

Resolved issues

This release provides the following new resolved issues in the SDK and wrapper:

l AP-5376, APG-1177: Fixed an issue where redirected server requests could fail to connect.

AppConnect 4.5.2 for iOS SDK revision history
This release does not provide any updates to the SDK.

New features summary

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 258

AppConnect 4.5.1 for iOS SDK revision history
This release does not provide any updates to the SDK.

AppConnect 4.5.0 for iOS SDK revision history
This release provides the following:

l Resolved issues
l Known issues

Resolved issues

This release provides the following new resolved issues:

l AP-5256: Workaround for a bug in a third-party app security framework, which caused a crash when
used with AppConnect.

l AP-5241: Fixed crash [ACAppInterfaceBus displayMessage:scheme:completion:].

l AP-5199: Sometimes AppConnect apps failed to unlock using biometric authentication if the device
passcode was set as the fallback option. Users may have seen this issues if the Check-in interval and
the AutoLock interval are small and equivalent. This issue is fixed.

Known issues

This release includes the following new known issues:

l APG-1154: UIScene apps, introduced in iOS 13, are not supported. The application lifecycle delegate
methods are not called, so AppConnect is never initialized.

AppConnect 4.4.2 for iOS SDK revision history
This release provides the following:

l Resolved issues
l Known issues

Resolved issues

This release provides the following new resolved issues:

l AP-5245: Fixed a Secure File I/O thread-safety issue which could cause I/O errors when writing to
multiple files simultaneously. Note that I/O to individual files should always be done from a single thread.

AppConnect 4.5.1 for iOS SDK revision history

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 259

l AP-5253: Fixed an exception when launching apps in the Xcode Simulator.

Known issues

This release includes the following new known issue:

l AP-5252: Web@Work 2.9.0.0 for iOS with Chromium does not trust some sites. For more information,
see the following Knowledge Base article in the MobileIron Community: Web@Work - Certain sites may
not be trusted when using Chromium engine.

AppConnect 4.4.1 for iOS SDK revision history
This release provides the following:

l Resolved issues
l Known issues

Resolved issues

This release includes the following new resolved issues:

l AP-5233: Under certain conditions when adding cookies to a network request, the cookies were dropped
after receiving an HTTP 302 redirect. This issue is fixed.

Known issues

This release includes the following new known issues:

l APG-1154: UIScene apps, introduced in iOS 13, are not supported. The application lifecycle delegate
methods are not called, so AppConnect is never initialized.

AppConnect 4.4.0 for iOS SDK revision history
This release provides the following:

l New features summary
l Resolved issues
l Limitations

New features summary
This release includes the following new features and enhancements:

Known issues

https://help.mobileiron.com/s/article-detail-page?urlname=Web-Work-Certain-sites-may-not-be-trusted-when-using-Chromium-engine
https://help.mobileiron.com/s/article-detail-page?urlname=Web-Work-Certain-sites-may-not-be-trusted-when-using-Chromium-engine

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 260

l Support for iOS 13: AppConnect apps work as expected on iOS 13 devices.

l The -displayMessage method is updated: The following method is deprecated:
-(void)displayMessage:(NSString *)message;

Instead, use the following new method:
-(void)displayMessage:(NSString *)message withCompletion:(void(^)(BOOL
success))completion;

The native sample apps included with the SDK are updated.

l armv7s architecture: Support for the armv7s architecture has been dropped.

Resolved issues

This release provides the following new resolved issues:

l AP-5158: iOS 13 changed the identification for iPad devices. If your iPad is upgraded to iOS 13,
MobileIron recommends that you also upgrade to MobileIron Core to one of the following patch releases:
10.2.0.2, 10.3.0.2, or 10.4.0.1. These patches contain the fixes for the changes in iOS 13 for iPad
identification.

l AP-5179: On devices running iOS 13, openURL does not return the bundle ID of the calling app if the
team ID is not the same. This issue is fixed with AppConnect 4.4.0 for iOS. To address the issue, update
to AppConnect 4.4.0.

l AP-5201: Previously, the NSProxy instance proxying application delegate did not receive application
lifecycle callbacks. This issue is fixed.

l AP-5207: On devices running iOS 13, AppConnect apps can Open files to other apps when Open In is
disabled. This issue is fixed with AppConnect 4.4.0 for iOS. To address the issue, update to AppConnect
4.4.0.

l AP-5166: On devices running iOS 13, NSURLSession failed. This issue is fixed with AppConnect 4.4.0
for iOS. To address the issue, update to AppConnect 4.4.0.

l AP-5169: On devices running iOS 13, Email+ for iOS displayed a black background in app switcher. This
issue is fixed with AppConnect 4.4.0 for iOS. To address the issue, update to AppConnect 4.4.0.

l AP-5174: Fixed the root cause due to which Email+ for iOS crashed intermittent.
l AP-5206: Previously, the AppConnect for iOS SDK was not calling applicationDidBecomeActive. This
issue is fixed.

Limitations

This release includes the following new limitations:

l AP-5186: The openURL API in iOS 13 provides the bundle ID of the calling app only if the calling app has
the same team ID. Due to this limitation, the Open From feature does not work on iOS 13 devices.

l AP-5164: Sharing files with the Chrome extension if Open In is restricted may cause the application to
freeze.

l AP-5159: On devices running iOS 13, the "Unable to Share Document with selected application" prompt
is not shown unless the Share dialog is closed.

Resolved issues

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 261

AppConnect 4.3.1 for iOS SDK revision history
This release does not provide any new features.

Support for the armv7s architecture is deprecated.

Resolved issues

This release provides the following new resolved issue:

l APG-1132: Fixed a potential crash in the NSURLSession delegate_task:didCompleteWithError:
method.

AppConnect 4.3.0 for iOS SDK revision history

New features
• Support for MobileIron AppStation

Apps built with the AppConnect 4.3.0 for iOS SDK can run with MobileIron AppStation as the MobileIron
client app instead of MobileIron Go. Administrators can use MobileIron AppStation on devices which are
interacting with a MobileIron Cloud tenant that supports Mobile Apps Management (MAM) but not
Mobile Device Management (MDM).
For your AppConnect app to support AppStation:
- Declare the alt-appconnectURL scheme in your app’s Info.plist as another allowed URL scheme.

See Declare the AppConnect URL schemes as allowed.
- Rebuild your app with the AppConnect 4.3.0 for iOS SDK.

See Task lists for upgrading the SDK in your app.
• Support for Open From data loss prevention policy

The AppConnect 4.3.0 for iOS SDK adds support for the Open From data loss protection policy. Although the
AppConnect library enforces the policy as configured on the MobileIron server, apps can implement methods
that allow them to inform the end user about the policy. For details, see Open From policy API details .

At the date of this AppConnect release, no MobileIron servers support this policy.

• iOS 9 no longer supported
AppConnect 4.3.0 for iOS is not supported on iOS 9 devices.
See Product versions required .

AppConnect 4.2.1 for iOS SDK revision history

New features
• Allow AppConnect apps to send custom cookies in web requests

Some web pages inject custom cookies into web requests. For example, when an end user taps on a link in a
web page, the page's JavaScript injects a custom cookie. If a user makes such a request from a web page
displayed in an AppConnect app, by default AppConnect does not include the injected cookies in the web
request, which can cause the request to fail. AppConnect now includes the custom cookies in the request if
the MobileIron server administrator includes the following key in the app's app-specific configuration on the

AppConnect 4.3.1 for iOS SDK revision history

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 262

MobileIron server: MI_AC_USE_ORIGINAL_COOKIES_FOR_DOMAINS. The value of the key is a comma-separated
string listing the domains for which the custom cookies should be included. Make sure no spaces are
included in the value.
For example:
www.somewebsite.com,somename.someotherwebsite.com

Limitations
• AP-5026: A Xamarin app crashes if it uses custom code to copy text rather than the native iOS copy

functionality.

AppConnect 4.2 for iOS SDK revision history

New features
• Added support for escrow certificates for apps that use the derived credentials APIs to deliver derived

credentials to the MobileIron client. Note that MobileIron support for this feature will be available only when
all involved MobileIron products support this feature.
See Sending derived credentials to the MobileIron client.

Resolved issues
• AP-4919: Fixed an issue that caused an AppConnect app to crash when it used the same object as a

delegate for multiple UI elements.
• AP-4150: After an AppConnect SDK or Cordova app became inactive and the AppConnect library blurred the

screen, a noticeable delay occurred when removing the blur when the app became active. This issue has
been fixed.

Known issues
• AP-4940: The LookUp option in the iOS context menu allows data to be shared to non-AppConnect apps

regardless of theOpen In and Copy/Paste To data loss prevention policies.

AppConnect 4.1.1 for iOS SDK revision history
This AppConnect release has no new features.

Resolved issues
• AP-4920: When an AppConnect’s app upload request is redirected, the request failed when using

AppTunnel. This issue has been fixed by converting the stream request to a body request when using
AppTunnel. Note that you can override the conversion by adding a key-value pair to the app’s AppConnect
configuration. Add MI_AC_DISABLE_HTTP_STREAM_CONVERSION with the value Yes.

• AP-4917: Fixed compilation issues when using the AppConnect for iOS SDK with projects containing
Objective-C++ files.

• APG-1118: Fixed an issue where apps subclassing NSProxy could crash on launch with the error -[NSProxy
doesNotRecognizeSelector:_ACDecoratorClass].

• APG-1097: Provides a workaround to a known bug in NSURLSession that sometimes causes the form body
to be missing in connections in AppConnect apps when using AppTunnel.

Limitations

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 263

Known issues
• AP-4919: If an AppConnect app uses the same object as a delegate for multiple UI elements, the app

crashes.

AppConnect 4.1 for iOS SDK revision history
This AppConnect release has several new features. It has no new known or resolved issues or limitations.

New features
• Certificate pinning support
• Lock AppConnect apps when screen is off
• Overriding the Open In Policy for openURL: with the mailto: scheme
• SwiftFileSharing demonstrates sharing secure files from an extension

Certificate pinning support

This AppConnect release supports certificate pinning for AppConnect apps to heighten security for
communication between AppConnect apps and enterprise servers or cloud services.

Using certificate pinning requires:
• Configuration on the MobileIron server.

For MobileIron Core, see “Certificate pinning for AppConnect apps” in the MobileIron Core AppConnect and
AppTunnel Guide.

• Mobile@Work 10.0.0.0 for iOS through the most recently released version as supported by MobileIron.

This feature requires no additional development in the app.

Lock AppConnect apps when screen is off

This AppConnect release supports automatically logging out device users from AppConnect apps when the
device screen is turned off due to either inactivity or user action.

This feature requires:
• Configuration on the MobileIron server.

For MobileIron Core, see “Configuring the AppConnect global policy” in the MobileIron Core AppConnect
and AppTunnel Guide.

• Mobile@Work 10.0.0.0 for iOS through the most recently released version as supported by MobileIron.

This feature requires no additional development in the app.

Overriding the Open In Policy for openURL: with the mailto: scheme

This AppConnect release allows either the app or MobileIron server administrator to override the Open In policy
when the policy blocks the iOS native email app when the app calls openURL: with the mailto: scheme.

Known issues

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 264

The AppConnect library overrides the Open In policy for native email if either of the following are true:
• The MobileIron server administrator added the key MI_AC_DISABLE_SCHEME_BLOCKING with the value

true to the app’s app-specific configuration.
• The app’s Info.plist contains the MI_APP_CONNECT dictionary with the key MI_AC_DISABLE_SCHEME_

BLOCKING with the value YES.

NOTE: THEMI_APP_CONNECTdictionary is new in this release.

See Open In policy API details .

SwiftFileSharing demonstrates sharing secure files from an extension

This AppConnect release has enhanced the SwiftFileSharing sample app to demonstrate how to share secure
files from an app’s extension using AppConnect APIs.

See Sharing secure files from an extension.

AppConnect 4.0 for iOS SDK revision history

New features
• Dynamic frameworks
• Swift support
• Secure file sharing from an extension
• Drag and Drop data loss prevention policy support
• Native email control using the Open In DLP policy
• App extension control using the Open In DLP policy
• Custom keyboard use controlled by MobileIron server
• Screen blurring
• Requirement for Face ID usage Info.plist entry
• Support for sending AppConnect logs from Mobile@Work
• Securing sensitive data such as encryption keys
• New category ACFileHandle (ACSharedSecureData)
• New custom cryptography methods
• Automatic policy status updates sent to MobileIron server

iOS 8 no longer supported

AppConnect 4.0 for iOS is not supported on iOS 8 devices.

See Product versions required .

Dynamic frameworks

The AppConnect 4.0 for iOS SDK changes the AppConnect.framework from a static to dynamic framework.
Therefore, to upgrade an app that used a previous AppConnect SDK, or to incorporate the SDK for the first time

SwiftFileSharing demonstrates sharing secure files froman extension

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 265

into your app, see Getting started with the AppConnect for iOS SDK.

One of the necessary steps in using the dynamic AppConnect.framework is to remove extra architectures from
the AppConnect app’s binary. Removing desktop architectures is required before submitting your app to the
Apple App Store. The AppConnect for iOS SDK provides a script for this purpose. The script is called post_
embed_actions.sh.

Also, as part of the reorganization relating to dynamic frameworks, AppConnect.h is now an umbrella header
which imports all the AppConnect.framework headers. AppConnectInterface.h now contains the definitions of
the AppConnect interface and the AppConnectDelegate protocol. See Header files in AppConnect framework.

Swift support

Secure file sharing from an extension

An AppConnect app can now provide an app extension, specifically a Document View Controller extension, to
share secure files with other AppConnect apps. A file can be shared with all AppConnect apps or with only
specific AppConnect apps. The files that the extension shares must be secure files, written with the secure file
I/O APIs.

See Sharing secure files from an extension.

Drag and Drop data loss prevention policy support

MobileIron server administrators can set a drag and drop policy for each AppConnect app. It specifies whether
AppConnect apps can drag content to all other apps, to only other AppConnect apps, or not at all.

The AppConnect library enforces this policy. When the policy allows dragging content to only other AppConnect
apps, the AppConnect library notifies your app when the device user attempts to drag content to a non-
AppConnect app. Your app can then notify the device user of the situation. Your app provides no other code to
support the drag and drop policy.

NOTE: This feature is not supportedwithMobileIronCloud.

See:
• Drag and drop policy API details
• Test data loss prevention policy handling

New callback method -openURLAttemptedWhenUnauthorizedForURL:

A new callback method -openURLAttemptedWhenUnauthorizedForURL: is provided. This method is called when
the app attempts to call -openURL: with the mailto scheme but no app that can handle the scheme is allowed by
the Open In DLP policy.

See Open In policy API details .

Swift support

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 266

Native email control using the Open In DLP policy
• Open In is allowed for all apps
• Open In is allowed for only whitelisted apps, and the native iOS mail app is in the whitelist. The whitelist must

contain both of these bundle IDs: com.apple.UIKit.activity.Mail and com.apple.mobilemail.

Additionally, the new callback method -openURLAttemptedWhenUnauthorizedForURL: is called when the app
attempts to call openURL: with the mailto: scheme, and one of the following is true:
• Open In is not allowed, and Email+ for iOS is not installed on the device.
• Open In is allowed only for Secure Apps, and Email+ is not installed on the device.

NOTE: Inbothof theabovecases, if Email+ for iOS is installedon thedevice, it is launched.

See Open In policy API details .

App extension control using the Open In DLP policy

The Open in data loss protection policy now includes restricting access to the iOS extensions that apps provide.
Specifically:

Open In DLP for host
app (the app using
the extension)

Extension behavior

All apps allowed The host app can use any app’s extension for Open In.

Only AppConnect apps
allowed

The host app can use only extensions provided by AppConnect apps for Open In.

Whitelist The host app can use only extensions of apps in the whitelist for Open In.

This addition has no impact on your app’s implementation of the Open In DLP APIs.

Custom keyboard use controlled by MobileIron server

The MobileIron server can now control custom keyboard use by your AppConnect app. If the administrator does
not configure this choice, your app can choose to reject custom keyboard use.

See Custom keyboard control.

Screen blurring

AppConnect 4.0 for iOS adds support for blurring screens when the app becomes inactive. If your app provided
its own screen blurring, remove that code. By using the AppConnect library’s screen blurring capability, all
AppConnect apps behave consistently.

To enable screen blurring, add the key MI_AC_PROVIDE_SCREEN_BLUR to your app’s Info.plist as a
Boolean. Set the value to YES.

Native email control using theOpen In DLP policy

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 267

When you set the Info.plist key MI_AC_PROVIDE_SCREEN_BLUR to YES, the MobileIron server
administrators can disable screen blurring by setting a key-value pair on the server for your app’s configuration.
The server key is MI_AC_ENABLE_SCREEN_BLURRING with the value false.

See Add AppConnect-related entries to your Info.plist.

Requirement for Face ID usage Info.plist entry

Include Privacy - Face ID Usage Description to your app’s info.plist, with a string value indicating the purpose
of Face ID use. For example, add the value AppConnect. If you manually add this key, its name is
NSFaceIDUsageDescription.

Server administrators can allow the use of Touch ID or Face ID instead of an AppConnect passcode. Therefore,
this Info.plist entry is required on iOS 11 through the most recently released version as supported by MobileIron.

Support for sending AppConnect logs from Mobile@Work

AppConnect apps using AppConnect 4.0 for iOS support the feature in Mobile@Work for iOS that sends
AppConnect logs to an email address of your choice, such as a company’s helpdesk. This feature requires
Mobile@Work 9.8 for iOS through the most recently released version as supported by MobileIron.

Mobile@Work displays the option to send logs on the app’s status details screen, available in Mobile@Work at
Settings > Secure Apps > <app name>. The option is at the bottom of the screen with this text: Send <app
name> Logs.

The option is displayed only for AppConnect apps using AppConnect 4.0 for iOS However, the displayed option
is disabled if the app’s AppConnect authorization status is not authorized.

When the option is displayed and enabled, tapping it brings up the list of apps able to share the log files, such as
email apps, if you included the following key-value pair for the app in its AppConnect app configuration:
• MI_AC_ENABLE_LOGGING_TO_FILE set to Yes

Securing sensitive data such as encryption keys

AppConnect 4.0 for iOS adds classes to provide heightened security for especially sensitive data, such as
encryption keys and passwords. These classes use hardware capabilities (Apple’s Secure Enclave) to reduce
the sensitive data’s attack surface, because the data is never stored in plain-text in memory.

See Securing sensitive data such as encryption keys.

New category ACFileHandle (ACSharedSecureData)

Use the new category ACFileHandle (ACSharedSecureData) in addition to the existing category NSData
(ACSharedSecureData) if you want to encrypt the data that your app stores and you want the app to share the
data with another AppConnect app.

Requirement for Face ID usage Info.plist entry

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 268

See Secure file I/O API details.

New custom cryptography methods

The AppConnect 4.0 for iOS SDK has deprecated the following methods:
-(NSError *)derivedAppKey:(uint8_t *)pKey withIndex:(NSString *)index;

-(NSError *)derivedSharedKey:(uint8_t *)pKey withIndex:(NSString *)index;

Newmethods are available that each return an ACSensitiveData object. If you are upgrading your app to use the
AppConnect 4.0 for iOS SDK, MobileIron recommends you use the new methods to take advantage of the
features of ACSensitiveData class.

See Encryption keys for custom cryptography and Securing sensitive data such as encryption keys.

Automatic policy status updates sent to MobileIron server

The AppConnect library now automatically sends a status update to the MobileIron server when it receives the
following changes:

Change Status update that AppConnect library sends to MobileIron server

Open In policy Informs server that the policy change has been applied.

Pasteboard policy Informs server that the policy change has been applied.

Print policy Informs server that the policy change has been passed to the app.

Configuration values Informs server that the configuration change has been passed to the app.

Authentication status Informs server that the authentication change has been passed to the app.

This change has no impact on your app’s implementation. Your app should continue to always call the
appropriate notification acknowledgment method:
-authStateApplied:message:

-configApplied:message:

-openInPolicyApplied:message:

-pasteboardPolicyApplied:message:

-printPolicyApplied:message:

-secureFileIOPolicyApplied:message:

Resolved issues
• AP-4324: The following methods now return an empty NSData object, instead of nil, if EOF was reached:

Newcustomcryptographymethods

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 269

- (NSData *)availableData;
- (NSData *)availableDataWithError:(NSError *__autoreleasing *)error;
- (NSData *)readDataToEndOfFile;
- (NSData *)readDataToEndOfFileWithError:(NSError *__autoreleasing *)error;
- (NSData *)readDataOfLength:(NSUInteger)length;
- (NSData *)readDataOfLength:(NSUInteger)length error:(NSError *__autoreleasing *)error;

• AP-4202: Custom protocol classes set to NSURLSessionConfiguration were previously ignored in
AppConnect apps. This issue has been fixed.

• AP-4133: Added ability to use NSURLConnection with NSURLSession networking with AppTunnel.

Known issues
• AP-4657: The "unauthorized message" screen is blurred. It continues to be blurred until the next time the app

switches to the MobileIron client app. After the next AppConnect checkin, the screen is no longer blurred.

Limitations
• AP-4720: On some devices, screen blurring does not occur when going to the Task Switcher.

AppConnect 3.5 for iOS SDK revision history

New features

iOS 11 compatibility

This version of the AppConnect for iOS SDK is compatible with devices running iOS 11 Beta 7. At the time of this
AppConnect release, the GA version of iOS 11 is not available.

IMPORTANT: Upgradeyour app touseAppConnect 3.5 for iOS for your app to runon iOS 11devices. Apps
builtwith SDKversionsprior to 3.1.3 crashon iOS 11devices. Appsbuiltwith version 3.1.3do
not crash, but theAppConnect librarydoes not handle thepasteboarddata loss prevention
policycorrectly.

For more information, see Product versions required on page 35.

Open In changes
• A new optional callback method called -appConnect:openInAttemptedWhenACOpenInPolicyBlocked: has

been added in the AppConnectDelegate protocol.
See The -appConnect:openInAttemptedWhenACOpenInPolicyBlocked: callback method on page 98.

• Because of iOS implementation changes, if an app uses UIActivityViewController to execute Open In, when
the Open In policy specifies a whitelist, Open In to all apps is not allowed. Therefore, use only
UIDocumentInteractionController to execute Open In.
See Overview of Open In handling on page 95.

• The AppConnect library supports a new key-value pair from the MobileIron server that tells the library not to
enforce the Open In policy. A MobileIron server administrator determines if this behavior is appropriate for an
enterprise. An app makes no changes relating to this feature.
See “Overriding the Open In Policy for the app” in the administrator documentationMobileIron Core
MobileIron AppConnect for iOS SDK App Developers Guide.

Known issues

MobileIron AppConnect 4.8.0 for iOS SDKAppDevelopers Guide| 270

Sample app Xcode projects now compatible with Xcode 8.3

The Xcode projects for the sample apps HelloAppConnect and DualMode are now compatible with Xcode 8.3.
They were previously compatible with Xcode 6.4.

See AppConnect for iOS SDK contents on page 26.

Resolved issues
• AP-4145: URL requests made on a background thread were not tunneled if the AppConnect library in the app

had not received the AppTunnel rules. The issue has been fixed because the AppConnect library now blocks
URL requests until after it has received the AppTunnel rules.

• AP-3917: When a URL request using NTLM authentication was tunneled with AppTunnel, an error occurred
when the device user was prompted with the user credentials dialog. The dialog displayed the Standalone
Sentry host name instead of the URL request’s host name. The issue has been fixed.

Limitations
• AP-4302: Apps that use UIDocumentInteractionController’s preview API will not be able to share documents

with other apps, because iOS 11 beta 6 and 7 allow sharing only with certain built-in extensions.

Releases prior to AppConnect 3.5 for iOS SDK revision history
For the revision history of releases prior to AppConnect 3.5 for iOS SDK, see the"MobileIron AppConnect 4.2 for
iOS SDK App Developers Guide", available on https://help.mobileiron.com.

Sample app Xcode projects nowcompatible with Xcode 8.3

https://help.mobileiron.com/s/mil-productdoclistpage?Id=a1s3400000240h0AAA&Name=AppConnect+for+iOS

	Revision history
	Contents
	New features and enhancements
	Introducing the MobileIron AppConnect for iOS SDK
	AppConnect for iOS overview
	Where to get the AppConnect for iOS SDK
	Secure app features
	AppConnect for iOS SDK advantages
	64-bit and 32-bit app support
	MobileIron AppConnect components
	Using a secure app
	App responsibilities
	MobileIron client app and AppConnect library responsibilities
	AppConnect for iOS SDK variants
	AppConnect for iOS SDK contents
	Header files in AppConnect framework
	Header files in AppConnectExtension framework
	AppConnect for iOS architecture
	The MobileIron client app and AppConnect apps
	App checkin and the MobileIron client app
	The auto-lock timeout and the MobileIron client app

	Product versions required
	Securing and managing the app using the AppConnect library
	Authorization
	AppConnect passcode and Touch ID/Face ID policy
	Configuration specific to the app
	AppTunnel
	AppTunnel supports only NSURLConnection and NSURLSession
	Accessing sockets directly does not use AppTunnel
	App’s responsibilities when using AppTunnel
	AppTunnel supports redirects and authentication requests on HTTP/S upload
	AppTunnel with TCP tunneling

	Certificate authentication to enterprise services
	Supported networking methods
	Unsupported networking methods

	Data loss prevention policies
	Custom keyboard control
	Data protection
	AppConnect-related data
	App data files

	Log messages

	Optional: Avoiding pasteboard notifications
	Configuring an App Group on the Apple Developer portal
	Add App Group to Info.plist

	Getting started with the AppConnect for iOS SDK
	Getting started tasks
	Before you begin adding the AppConnect SDK to your app
	First-time use of SDK in your app
	Task lists for upgrading the SDK in your app
	SDK 3.6 and later upgrade task list
	SDK 3.1 through 3.5 upgrade task list

	Getting started task list
	Add AppConnect files and settings to your Xcode project
	Add your own libcrypto.a, libProtocolBuffers.a, and libssl.a libraries if needed
	Register as a handler of the AppConnect URL scheme
	Declare the AppConnect URL schemes as allowed
	Add AppConnect-related entries to your Info.plist
	Enable screen blurring
	Allow Face ID

	Use AppConnect’s UIApplication subclass
	Initialize the AppConnect library
	Wait for the AppConnect singleton to be ready
	Optional: Specify app permissions and configuration in a plist file
	Using your own UIApplication subclass

	Using the AppConnect framework in a Swift app
	First time use of SDK in your Swift app
	Tasks for upgrading the SDK in your Swift app

	Troubleshooting
	AppConnect(ACURLSessionDataDelegateProxy.o)' does not contain bitcode.
	Lexical or preprocessor issue when building your app
	App crashes in call to -startWithLaunchOptions:
	Application error: Unable to communicate with the application
	App crashes due to uncaught ACPropertyAccessException

	Developing third-party dual-mode apps
	What is a dual-mode app?
	Dual-mode sample app
	Dual-mode app states
	Data encryption states
	Actions when changing to the Encrypted state
	Actions when changing to the Unencrypted state

	High-level dual-mode app behavior
	When the app launches for the first time
	When an app subsequently launches
	User requests to switch to Non-AppConnect Mode
	User requests to switch to AppConnect Mode
	Data loss prevention policy handling

	Dual-mode API details
	The ACManagedPolicy enumeration
	The managedPolicy property
	Dual mode methods
	The +shouldStartAppConnect: class method
	The -appConnect:managedPolicyChangedTo: callback method
	The stop method
	The retire method

	API call sequence when the app launches
	API call sequence when user requests Non-AppConnect Mode
	API call sequence when user requests AppConnect Mode

	AppConnect for iOS API
	The AppConnect interface
	AppConnect-related notifications
	Notification methods in the AppConnectDelegate protocol
	Notification acknowledgments

	Multithread support
	AppConnect ready API details
	The ready property
	Impacted instance properties
	The -appConnectIsReady: callback method
	Pseudocode for -isAppConnectReady:

	Authorization API details
	The ACAuthState enumeration
	The authState and authMessage properties
	Authorization methods
	The -appConnect:authStateChangedTo:withMessage: callback method
	The -authStateApplied:message: acknowledgment method
	The -displayMessage: method

	App-specific configuration API details
	The config property
	App-specific configuration methods
	The -appConnect:configChangedTo: callback method
	The -configApplied:message: acknowledgment method

	Pasteboard policy API details
	The ACPasteboardPolicy enumeration
	Impact on the pasteboard policy of secure services availability
	The pasteboardPolicy property
	Pasteboard policy methods
	The -appConnect:pasteboardPolicyChangedTo: callback method
	The -pasteboardPolicyApplied:message: acknowledgment method
	The -appConnect:copyAttemptedWhenUnauthorized: callback method

	Drag and drop policy API details
	Drag and drop policy method

	Open In policy API details
	Overview of Open In handling
	The ACOpenInPolicy enumeration
	The openInPolicy and openInWhitelist properties
	Open In policy methods
	The -appConnect:openInPolicyChangedTo:whitelist: callback method
	The -openInPolicyApplied:message: acknowledgment method
	The -appConnect:openInAttemptedWhenACOpenInPolicyBlocked: callback method
	The -appConnect:openURLAttemptedWhenUnauthorizedForURL: callback method

	Info.plist key related to the Open In policy

	Open From policy API details
	Overview of Open From handling
	The ACOpenFromPolicy enumeration
	The openFromPolicy and openFromWhitelist properties
	Open From policy methods
	The -appConnect:openFromPolicyChangedTo:whitelist: callback method
	The -openFromPolicyApplied:message: acknowledgment method
	The -appConnect:openFromAttemptedWhenACOpenFromPolicyBlocked: callback method

	Print policy API details
	The ACPrintPolicy enumeration
	The printPolicy property
	Print policy methods
	The -appConnect:printPolicyChangedTo: callback method
	The -printPolicyApplied:message: acknowledgment method

	Log messages API details
	The ACLogLevel enumeration
	Log level descriptions and examples
	Sensitive data examples
	The logLevel property
	Log level methods
	The -appConnect:logLevelChangedTo: callback method
	logAtLevel class methods
	-logAtLevel:format:args: example
	Log level methods and dual mode apps

	Secure services API details
	The ACSecureServicesAvailability enumeration
	The ACSecureFileIOPolicy enumeration
	The secureServicesAvailability and secureFileIOPolicy properties
	Secure services methods
	The -appConnect:secureServicesAvailabilityChangedTo: callback method
	The -appConnect:secureFileIOPolicyChangedTo: callback method
	The -secureFileIOPolicyApplied:message: acknowledgment method

	Version property
	Getting upload status for tunneled HTTP/S requests
	AppConnect library behavior when using AppTunnel
	Upload status API overview
	The AppConnectNetworkingDelegate protocol
	The -setNetworkingDelegate: method

	Caching tunneled URL responses
	AppConnectUIApplication class
	Using your own UIApplication subclass
	originalDelegate property (deprecated)

	Encryption keys for custom cryptography
	Overview of encryption keys for custom cryptography
	The -derivedAppKeyWithIdentifier:error: method
	The -derivedSharedKeyWithIdentifier:error: method
	Error returns for derived key methods
	Deprecated custom cryptography methods
	The -derivedAppKey:withIndex: method (deprecated)
	The -derivedSharedKey:withIndex: method (deprecated)

	Securing sensitive data such as encryption keys
	Coding your app to secure sensitive data
	Configuring the MobileIron server to secure sensitive data for your app
	Debugging ACSensitiveData usage

	iOS active state change notifications due to AppConnect control switches
	Situations that trigger the state change notifications

	Secure file I/O API details
	POSIX-style secure file APIs
	Additional error returns using ACSecureFileLastError()

	ACFileHandle class for AppConnect secure file I/O
	Overridden and added NSFileHandle methods
	ACFileHandle example

	Objective-C categories for AppConnect secure file I/O
	NSFileManager category
	NSData (ACSecureFile) category
	NSData (ACSharedSecureFile) and ACFileHandle (ACSharedSecureFile) categories
	NSKeyedArchiver category
	NSKeyedUnarchiver category
	NSDictionary category
	NSMutableDictionary category
	NSArray category
	NSMutableArray category

	NSError objects that secure Objective-C methods return

	Sharing secure files from an extension
	Setting up the MobileIron server for sharing files from an extension
	Setting up the provider app’s Info.plist
	Coding the provider app to share secure files with its extension
	Coding the extension to share files with the host app
	Coding the host app to access the shared file

	AppTunnel diagnostic API details
	Running an AppTunnel diagnostic
	-diagnoseTunnelingForURL:resultHandler: parameters
	-diagnoseTunnelingForURL:resultHandler: return value
	The result handler for diagnostic runs
	The ACTunnelingDiagnosticResult class
	The ACTunnelingDiagnosticResultCode enumeration
	AppTunnel configuration troubleshooting checklist for MobileIron Core

	UIScene support

	Best practices for using the AppConnect for iOS SDK
	Display authorization status in the home screen
	Allow the user to enter credentials manually
	Use the AppConnectDelegate protocol for notifications
	Limit the size of configuration data from the MobileIron server
	Use the UIApplication’s delegate as you normally would
	Consider limitations when using the iOS simulator
	Enable the AppConnect library to blur screens when the app becomes inactive
	Do not put secure data in the app bundle
	Indicate to the user that the app is initializing
	Reject custom keyboard control
	Do not use UIWebView to upload sensitive data
	Provide documentation about your app to the MobileIron server administrator

	AppConnect library log messages
	Informational log messages
	API usage errors and warnings
	Miscellaneous errors and warning

	Developing AppConnect apps with Xamarin
	Overview of using AppConnect with Xamarin apps
	Available C# bindings
	Xamarin AppConnect sample apps
	How to include the Xamarin C# binding in your Xamarin project
	How to initialize your Xamarin app to use AppConnect C# APIs
	Register as a handler of the AppConnect URL scheme
	Declare the AppConnect URL scheme as allowed
	Add AppConnect-related entries to your Info.plist
	Enable screen blurring
	Allow Face ID

	Use AppConnect’s UIApplication subclass
	Initialize the AppConnect library
	Edit your AppDelegate source file
	Create a subclass of AppConnectDelegate
	Modify your UIApplicationDelegate subclass

	Wait for the AppConnect singleton to be ready
	Optional: Specify app permissions and configurations in a plist file
	Create the AppConnect.plist in Xamarin Studio
	Edit the AppConnect.plist
	Convert the AppConnect.plist to binary format

	AppTunnel support in Xamarin apps
	AppTunnel Diagnostic API for Xamarin
	Set up your app to use the AppTunnel Diagnostic API for Xamarin
	Run the API
	API Response
	Sample response

	FIPS compliance in an AppConnect SDK app
	Testing for third-party app developers
	Third-party AppConnect app testing overview
	Set up MobileIron Core
	Login to the Admin Portal
	Enable AppConnect on MobileIron Core
	Configure the AppConnect global policy
	Create an AppConnect container policy

	Set up your end-user device
	Set up Mobile@Work on an iOS device
	Install your app on the device
	Set up the AppConnect passcode on the device

	Test authorization status handling
	Change the status to authorized or unauthorized
	Change the status to retired
	Reauthorize a retired app

	Test data loss prevention policy handling
	Test AppConnect configuration change handling
	Create an AppConnect app configuration
	Update the AppConnect app configuration

	Test using AppTunnel
	Enable AppTunnel on MobileIron Core
	Use an existing certificate
	Generate a certificate
	Create a certificate authority for using AppTunnel with HTTP/S tunneling
	Create a local certificate enrollment setting

	Configure the Sentry with an AppTunnel service
	Configure the AppTunnel service in the AppConnect app configuration

	Test logging messages to the console or files
	Log levels
	Debug code for verbose and debug log levels
	Logging to files
	Log file details
	Configuring logging to files
	Pushing the new log level to the device
	Activating verbose or debug logging on the device
	Sending log files in an email

	Test the app documentation

	Testing for in-house app developers
	In-house AppConnect app testing overview
	Set up MobileIron Core
	Login to the Admin Portal
	Enable AppConnect on MobileIron Core
	Create a label for testing your app
	Upload your app to MobileIron Core if you use AppConnect.plist
	Verify your AppConnect.plist settings
	Configure the AppConnect global policy
	Create an AppConnect container policy, if necessary

	Set up your end-user device
	Set up Mobile@Work on an iOS device
	Install your app on the device
	Set up the AppConnect passcode on the device

	Test authorization status handling
	Change the status to authorized or unauthorized
	Change the status to retired
	Reauthorize a retired app

	Test data loss prevention policy handling
	Test AppConnect configuration change handling
	Create an AppConnect app configuration
	Update the AppConnect app configuration

	Test using AppTunnel
	Enable AppTunnel on MobileIron Core
	Use an existing certificate
	Generate a certificate
	Create a certificate authority for using an AppTunnel with HTTP/S tunneling
	Create a local certificate enrollment setting

	Configure the Sentry with an AppTunnel service
	Configure the AppTunnel service in the AppConnect app configuration

	Test logging messages to the console or files
	Log levels
	Debug code for verbose and debug log levels
	Logging to files
	Log file details
	Configuring logging to files
	Pushing the new log level to the device
	Activating verbose or debug logging on the device
	Sending log files in an email

	Test the app documentation

	Derived credential handling
	Derived credential handling overview
	Derived credential header files
	Before adding derived credentials code
	Making your app an AppConnect app
	Declaring the appConnectdc URL scheme as allowed
	Registering as a handler of a URL scheme you define

	Sending derived credentials to the MobileIron client
	Handling the custom URL scheme in your app delegate
	Checking if the MobileIron client supports derived credentials
	Checking if sending credentials to MobileIron client is currently allowed
	Getting a derived credential
	Preparing a certificates array
	Preparing an ACDerivedCredential object
	Creating an ACDervicedCredentialService object
	Sending the certificates to the MobileIron client
	Handling secure services becoming available

	AppConnect for iOS SDK revision history
	AppConnect 4.8.0 for iOS SDK revision history
	New features and enhancements summary
	Resolved issues
	Known issues
	Limitations

	AppConnect 4.7.0 for iOS SDK revision history
	New features and enhancements summary
	Resolved issues
	Known issues
	Limitations

	AppConnect 4.6.0 for iOS SDK revision history
	New features summary
	Resolved issues

	AppConnect 4.5.3 for iOS SDK revision history
	Resolved issues

	AppConnect 4.5.2 for iOS SDK revision history
	AppConnect 4.5.1 for iOS SDK revision history
	AppConnect 4.5.0 for iOS SDK revision history
	Resolved issues
	Known issues

	AppConnect 4.4.2 for iOS SDK revision history
	Resolved issues
	Known issues

	AppConnect 4.4.1 for iOS SDK revision history
	Resolved issues
	Known issues

	AppConnect 4.4.0 for iOS SDK revision history
	New features summary
	Resolved issues
	Limitations

	AppConnect 4.3.1 for iOS SDK revision history
	Resolved issues

	AppConnect 4.3.0 for iOS SDK revision history
	New features

	AppConnect 4.2.1 for iOS SDK revision history
	New features
	Limitations

	AppConnect 4.2 for iOS SDK revision history
	New features
	Resolved issues
	Known issues

	AppConnect 4.1.1 for iOS SDK revision history
	Resolved issues
	Known issues

	AppConnect 4.1 for iOS SDK revision history
	New features
	Certificate pinning support
	Lock AppConnect apps when screen is off
	Overriding the Open In Policy for openURL: with the mailto: scheme
	SwiftFileSharing demonstrates sharing secure files from an extension

	AppConnect 4.0 for iOS SDK revision history
	New features
	iOS 8 no longer supported
	Dynamic frameworks
	Swift support
	Secure file sharing from an extension
	Drag and Drop data loss prevention policy support
	New callback method -openURLAttemptedWhenUnauthorizedForURL:
	Native email control using the Open In DLP policy
	App extension control using the Open In DLP policy
	Custom keyboard use controlled by MobileIron server
	Screen blurring
	Requirement for Face ID usage Info.plist entry
	Support for sending AppConnect logs from Mobile@Work
	Securing sensitive data such as encryption keys
	New category ACFileHandle (ACSharedSecureData)
	New custom cryptography methods
	Automatic policy status updates sent to MobileIron server

	Resolved issues
	Known issues
	Limitations

	AppConnect 3.5 for iOS SDK revision history
	New features
	iOS 11 compatibility
	Open In changes
	Sample app Xcode projects now compatible with Xcode 8.3

	Resolved issues
	Limitations

	Releases prior to AppConnect 3.5 for iOS SDK revision history

